Affiliation:
1. White Ridge Solutions, LLC Frederick MD USA
2. GATS Driggs ID USA
3. Bradley Department of Electrical and Computer Engineering Center for Space Science and Engineering Research Blacksburg VA USA
4. Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder CO USA
5. Department of Atmospheric and Oceanic Sciences University of Colorado Boulder Boulder CO USA
6. Ann and H. J. Smead Department of Aerospace Engineering Sciences University of Colorado Boulder CO USA
Abstract
AbstractThe Andes account for the largest source of orographic gravity waves (GWs) in the middle atmosphere. This results from persistent, strong zonal winds at the surface encountering the north‐south mountain chain, producing strong orographic lift, and resulting GWs. Here, we consider GWs in the stratosphere and mesosphere above the Andes as observed by the Cloud Imaging and Particle Size instrument, the Solar Occultation for Ice Experiment on the AIM satellite, and the Sounding of the Atmosphere using Broadband Emission Radiometry instrument onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite. GW variability is considered in the context of the location of the stratospheric wintertime westerly jet and planetary wave (PW) amplitude and phase. The occurrence of GWs in the middle and upper atmosphere depends not only on tropospheric sources, like the Andes, but also on the background winds through which they propagate. Results suggest that the propagation of GWs into the mesosphere is well correlated with winds throughout the middle and upper stratosphere. PWs cause the westerly jet to move over the Andes, resulting in an increase in GW amplitude throughout the middle and upper stratosphere. The evolution and variability of GWs are tied closely to the phase of the PW‐1 and are linked to PW‐2 when the PW amplitudes are sufficiently large. GW amplitude, as observed by all three data sets, increases in the upper stratosphere and lower mesosphere when the trough of the PW‐1 in the stratosphere is over the Andes.
Funder
Heliophysics Division
National Aeronautics and Space Administration
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献