Erosion and Transport of Dry Soil Bed by Collisional Granular Flow: Insights From a Combined Experimental–Numerical Investigation

Author:

Jiang Yupeng12,Song Pengjia2ORCID,Choi Clarence E.2ORCID,Choo Jinhyun23ORCID

Affiliation:

1. Institut für Baumechanik und Numeriche Mechanik Leibniz Universität Hannover Hannover Germany

2. Department of Civil Engineering The University of Hong Kong Hong Kong China

3. Department of Civil and Environmental Engineering KAIST Daejeon South Korea

Abstract

AbstractCollision‐induced stresses on soil beds under granular geophysical flows have been demonstrated to be highly erosive. However, it remains mostly elusive as to how a collisional granular flow erodes and transports soil bed material. This paper presents a combined experimental and numerical investigation into the mechanisms underlying collision‐induced erosion and transport of dry soil beds. A series of flume experiments are conducted where collisional granular flows erode dry sand beds under varied conditions. The experiments are then back‐analyzed using a hybrid continuum–discrete simulator to gain physical insight into the erosion and transport processes. Results show that the key mechanism of collision‐induced erosion and transport is the retexturing of the soil bed surface. This implies that bed morphology, which has often been overlooked in mobility and hazard assessments, has profound effects on erosion and transport potential. Further, contrary to most existing models that assume all the eroded bed volume is carried away by granular flow, it is found that only up to 80% of the eroded material is transported. Also found is that the collisional stresses of the monodisperse grains in this study follow the Pareto distribution in which 80% of differences in the outcomes are due to 20% of causes. This finding suggests that there is measurable certainness in a seemingly random process of coarse grain collisions with an erodible soil bed.

Publisher

American Geophysical Union (AGU)

Subject

Earth-Surface Processes,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3