From Outcrop to Spectrum—An Automated Approach to Modal Mineralogy of Silt‐Sized Sediment Applied to Central European Loess

Author:

Lünsdorf Nils Keno1ORCID,Lünsdorf Jan Ontje,Újvári Gábor23ORCID,Dunkl István1ORCID,Wolfram Lukas4,Hobrecht Adrian4,Laake Lothar4,von Eynatten Hilmar1

Affiliation:

1. Department of Sedimentology and Environmental Geology Georg‐August University Göttingen Göttingen Germany

2. Centre for Astronomy and Earth Sciences Institute for Geological and Geochemical Research Hungarian Research Network Budapest Hungary

3. CSFK MTA Centre of Excellence Budapest Hungary

4. Central Workshop of the Geoscience Centre Georg‐August University Göttingen Göttingen Germany

Abstract

AbstractProvenance information from recent and ancient sedimentary archives is obscured by several factors and for disentangling these intermingled signals, analysis by multiple methods is paramount. In sedimentary provenance analysis (SPA), single‐grain methods determining mineralogy, chemical composition, or radiometric ages are of key importance but are mostly applied to sand‐sized sediments or sedimentary rocks. Finer grained sediments or sedimentary rocks are usually analyzed by whole‐rock geochemical means and seldom by single‐grain methods. Considering the abundance of fine‐grained sedimentary archives, a strong need for single‐grain, multi‐method analyses of silt‐sized sediments is obvious. Thus, we propose a workflow that is optimized for sample throughput and correlative analysis of fine‐grained sediments based on machine learning methods. The feasibility of the workflow is demonstrated by differentiating three Central European loess‐paleosol‐sequences. The increased sample throughput enables access to sedimentary archives at high spatial and/or temporal resolution, which will open up new research pathways in SPA of silt‐sized sediments.

Publisher

American Geophysical Union (AGU)

Subject

Earth-Surface Processes,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3