Integrating heavy-mineral, geochemical and biomarker analyses of Plio-Pleistocene sandy and silty turbidites: a novel approach for provenance studies (Indus Fan, IODP Expedition 355)

Author:

Andò SORCID,Aharonovich S,Hahn A,George SC,Clift PDORCID,Garzanti EORCID

Abstract

AbstractA multidisciplinary mineralogical, geochemical and biomarker study of Indus Fan sediments cored during International Ocean Discovery Program (IODP) Expedition 355 to the Laxmi Basin was carried out to define the different compositional signatures of sand, silt and clay. Upper Pliocene – lower Pleistocene turbidites from sites U1456 and U1457 were selected as the best candidates for this study. The integrated dataset presented here was obtained by coupling traditional and innovative bulk-sediment and single-mineral techniques on the same samples. Turbiditic deposits mostly consist of medium to fine silt, including rich and diverse heavy-mineral assemblages. Such a fine grain size forced us to push the limits of high-resolution quantitative heavy-mineral analysis down to as low as 5 μm. Heavy-mineral analysis allowed us to establish a Himalayan origin of the detritus in the studied turbidites. Heavy-mineral concentrations are higher in channel-fill than in overbank deposits. Mineralogical and geochemical data concur in revealing that fast-settling ultradense minerals such as zircon are preferentially concentrated in channel-fill deposits, whereas the top of overbank deposits are notably enriched with slow-settling platy phyllosilicates. Biomarker analysis represents a most suitable complementary technique that is able to investigate the provenance signature of the finer sediment fraction, largely consisting of clay. This technique allowed us to identify a largely terrigenous origin of organic matter at Site U1456 and an open marine origin at Site U1457. The latter site lies closer to the Laxmi Ridge, where thermal maturity increases with depth to reach the early oil window (127°C at c. 320 m below the seafloor).

Publisher

Cambridge University Press (CUP)

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3