Experiments on Gravel‐Sand Transitions: Examination of Washload Deposition

Author:

Dingle Elizabeth H.12ORCID,Venditti Jeremy G.3ORCID

Affiliation:

1. Department of Geography Simon Fraser University Burnaby BC Canada

2. Department of Geography Durham University Durham UK

3. School of Environmental Science Simon Fraser University Burnaby BC Canada

Abstract

AbstractAn abrupt transition in bed grain size occurs in river systems. Over a short downstream distance, often only a few channel widths, the bed surface fines from gravel (∼10 mm) to sand (∼1 mm). This is the gravel‐sand transition (GST), and it is the only abrupt downstream reduction in grain size within fluvial systems. There are several theories for the origin of the GST, including size‐selective deposition of bimodal grain size distributions and the rapid onset of washload deposition due to changes in particle suspension properties at shear velocities of ∼0.1 m/s. Here, we present a laboratory experiment examining changes in fluid and sediment dynamics across a GST. We developed a stable gravel bed reach that was just below the threshold of motion, then fed sand. We observed sand carried as washload in the gravel reach fall out of suspension, forming a sand bed and a stable GST. Shear velocity was 0.09–0.10 m/s upstream of the GST and <0.10 m/s downstream, consistent with the washload deposition hypothesis. We were then able to perturb the position of the GST by systematically varying discharge and/or sand supply, shifting it downstream with an increase in discharge or a reduction in sediment supply. A decrease in discharge or increase in sand supply caused upstream migration. Our observations support an abrupt change in washload transport conditions across a narrow range of shear velocities, consistent with the washload deposition theory and measurements taken across GSTs in natural river systems.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

American Geophysical Union (AGU)

Subject

Earth-Surface Processes,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3