The roles of geometry and viscosity in the mobilization of coarse sediment by finer sediment

Author:

Hassan Marwan A.1,Parker Gary23ORCID,Hassan Yarra4,An Chenge56,Fu Xudong6ORCID,Venditti Jeremy G.7

Affiliation:

1. Department of Geography, The University of British Columbia, Vancouver, BC V6T 1Z2, Canada

2. Department of Earth Science and Environmental Change, University of Illinois Urbana-Champaign, Urbana, IL 61801

3. Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801

4. Department of Chemistry, University of Washington, Seattle, WA 98195-1700

5. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100048, China

6. State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China

7. School of Environmental Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada

Abstract

In rivers, the addition of finer sediment to a coarser riverbed is known to increase the mobility of the coarser fraction. Two mechanisms have been suggested for this: a geometric mechanism whereby smaller sizes smooth the bed, increasing near-bed velocity and thus mobility of the larger sizes, and a viscous mechanism whereby a transitionally smooth turbulent boundary layer forms, rendering the coarser grains more mobile. Here, we report on experiments using two sediment mixtures to better understand these proposed mechanisms. In Mixture 1, we used 0.5 and 5 mm grains, and in Mixture 2, we used 2 and 20 mm grains. If the entrainment of coarse gravel by finer sediment is a purely geometric effect, then the addition of finer material should produce the same effect on the mobility of the coarser material for both mixtures because they have the same size ratio. We show that addition of finer material has a different effect on the two mixtures. We observed an increase in the mobility of the coarse fraction for both mixtures, but the increase in coarse fraction mobility for Mixture 1 was almost twice that for Mixture 2. Our experiments show that in addition to the geometric effect, enhancement of coarse gravel transport by finer sediment is also driven by a viscous effect.

Funder

MOST | National Natural Science Foundation of China

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3