Mapping Glacier Basal Sliding Applying Machine Learning

Author:

Umlauft Josefine1ORCID,Johnson Christopher W.2ORCID,Roux Philippe3ORCID,Trugman Daniel Taylor4ORCID,Lecointre Albanne3ORCID,Walpersdorf Andrea3ORCID,Nanni Ugo5,Gimbert Florent6ORCID,Rouet‐Leduc Bertrand7,Hulbert Claudia8ORCID,Lüdtke Stefan9ORCID,Marton Sascha10ORCID,Johnson Paul A.2ORCID

Affiliation:

1. ScaDS.AI – Center for Scalable Data Analytics and Artificial Intelligence Leipzig University Leipzig Germany

2. Los Alamos National Laboratory Los Alamos NM USA

3. ISTerre – Institut des Sciences de la Terre Maison des Geosciences Grenoble France

4. Nevada Seismological Laboratory University of Nevada Reno NV USA

5. Department of Geosciences University of Oslo Oslo Norway

6. IGE ‐ Institut de Geophysique de l’Environnement Grenoble France

7. Disaster Prevention Research Center Kyoto University Kyoto Japan

8. Ecole Normale Superieure Paris France

9. Institute for Visual & Analytic Computing University of Rostock Rostock Germany

10. Institute for Enterprise Systems University of Mannheim Mannheim Germany

Abstract

AbstractDuring the RESOLVE project (“High‐resolution imaging in subsurface geophysics: development of a multi‐instrument platform for interdisciplinary research”), continuous surface displacement and seismic array observations were obtained on Glacier d’Argentière in the French Alps for 35 days in May 2018. The data set is used to perform a detailed study of targeted processes within the highly dynamic cryospheric environment. In particular, the physical processes controlling glacial basal motion are poorly understood and remain challenging to observe directly. Especially in the Alpine region for temperate based glaciers where the ice rapidly responds to changing climatic conditions and thus, processes are strongly intermittent in time and heterogeneous in space. Spatially dense seismic and Global Positioning System (GPS) measurements are analyzed applying machine learning to gain insight into the processes controlling glacial motions of Glacier d’Argentière. Using multiple bandpass‐filtered copies of the continuous seismic waveforms, we compute energy‐based features, develop a matched field beamforming catalog and include meteorological observations. Features describing the data are analyzed with a gradient boosting decision tree model to directly estimate the GPS displacements from the seismic noise. We posit that features of the seismic noise provide direct access to the dominant parameters that drive displacement on the highly variable and unsteady surface of the glacier. The machine learning model infers daily fluctuations and longer term trends. The results show on‐ice displacement rates are strongly modulated by activity at the base of the glacier. The techniques presented provide a new approach to study glacial basal sliding and discover its full complexity.

Publisher

American Geophysical Union (AGU)

Subject

Earth-Surface Processes,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3