Affiliation:
1. Department of Geology and Geophysics Louisiana State University Baton Rouge LA USA
2. Earth Lab Cooperative Institute for Research in Environmental Sciences (CIRES) University of Colorado Boulder CO USA
Abstract
AbstractMountain topography alters the phase, amount, and spatial distribution of precipitation. Past efforts focused on how orographic precipitation can alter spatial patterns in mean runoff, with less emphasis on how time‐varying runoff statistics may also vary with topography. Given the importance of the magnitude and frequency of runoff events to fluvial erosion, we evaluated whether orographic patterns in mean runoff and daily runoff variability can be constrained using the global WaterGAP3 water model data. Model runoff data are validated against observational data in the contiguous United States, showing agreement with mean runoff in all settings and daily runoff variability in settings where rainfall‐runoff predominates. In snowmelt‐influenced settings, runoff variability is overestimated by the water model data. Cognizant of these limitations, we use the water model data to develop relationships between mean runoff and daily runoff variability and how these are mediated by snowmelt fraction in mountain topography globally. A global analysis of topographic controls on hydroclimatic variables using a random forest model was ambiguous. Instead, relationships between topography and runoff parameters are better assessed at the mountain range scale. Rulesets linking topography to mean runoff and snowmelt fraction are developed for three mid‐latitude mountain landscapes—British Columbia, European Alps, and Greater Caucasus. Increasing topographic elevation and relief together leads to higher mean runoff and lower runoff variability due to the increasing contribution of snowmelt. The three sets of empirical relationships developed here serve as the basis for a suite of numerical experiments in our companion manuscript (Part 2, Forte & Rossi, 2024a, https://doi.org.10.1002/2023JF007327).
Funder
National Science Foundation
Publisher
American Geophysical Union (AGU)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献