Affiliation:
1. Department of Meteorology University of Reading Reading UK
2. Northumbria University Newcastle‐upon‐Tyne UK
3. Predictive Science Inc. San Diego CA USA
4. Met Office Exeter UK
Abstract
AbstractFor accurate and timely space weather forecasting, advanced knowledge of the ambient solar wind is required, both for its direct impact on the magnetosphere and for accurately forecasting the propagation of coronal mass ejections to Earth. Data assimilation (DA) combines model output and observations to form an optimum estimation of reality. Initial experiments with assimilation of in situ solar wind speed observations suggest the potential for significant improvement in the forecast skill of near‐Earth solar wind conditions. However, these experiments have assimilated science‐quality observations, rather than near‐real‐time (NRT) data that would be available to an operational forecast scheme. Here, we assimilate both NRT and science observations from the Solar Terrestrial Relations Observatory (STEREO) and near‐Earth observations from the Advanced Composition Explorer and Deep Space Climate Observatory spacecraft. We show that solar wind speed forecasts using NRT data are comparable to those based on science‐level data. This suggests that an operational solar wind DA scheme would provide significant forecast improvement, with reduction in the mean absolute error of solar wind speed around 46% over forecasts without DA. With a proposed space weather monitor planned for the L5 Lagrange point, we also quantify the solar wind forecast gain expected from L5 observations alongside existing observations from L1. This is achieved using configurations of the STEREO and L1 spacecraft. There is a 15% improvement for forecast lead times of less than 5 days when observations from L5 are assimilated alongside those from L1, compared to assimilation of L1 observations alone.
Funder
Natural Environment Research Council
Science and Technology Facilities Council
Publisher
American Geophysical Union (AGU)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献