Solar Wind Data Assimilation in an Operational Context: Use of Near‐Real‐Time Data and the Forecast Value of an L5 Monitor

Author:

Turner Harriet1ORCID,Lang Matthew1ORCID,Owens Mathew1ORCID,Smith Andy2ORCID,Riley Pete3ORCID,Marsh Mike4ORCID,Gonzi Siegfried4ORCID

Affiliation:

1. Department of Meteorology University of Reading Reading UK

2. Northumbria University Newcastle‐upon‐Tyne UK

3. Predictive Science Inc. San Diego CA USA

4. Met Office Exeter UK

Abstract

AbstractFor accurate and timely space weather forecasting, advanced knowledge of the ambient solar wind is required, both for its direct impact on the magnetosphere and for accurately forecasting the propagation of coronal mass ejections to Earth. Data assimilation (DA) combines model output and observations to form an optimum estimation of reality. Initial experiments with assimilation of in situ solar wind speed observations suggest the potential for significant improvement in the forecast skill of near‐Earth solar wind conditions. However, these experiments have assimilated science‐quality observations, rather than near‐real‐time (NRT) data that would be available to an operational forecast scheme. Here, we assimilate both NRT and science observations from the Solar Terrestrial Relations Observatory (STEREO) and near‐Earth observations from the Advanced Composition Explorer and Deep Space Climate Observatory spacecraft. We show that solar wind speed forecasts using NRT data are comparable to those based on science‐level data. This suggests that an operational solar wind DA scheme would provide significant forecast improvement, with reduction in the mean absolute error of solar wind speed around 46% over forecasts without DA. With a proposed space weather monitor planned for the L5 Lagrange point, we also quantify the solar wind forecast gain expected from L5 observations alongside existing observations from L1. This is achieved using configurations of the STEREO and L1 spacecraft. There is a 15% improvement for forecast lead times of less than 5 days when observations from L5 are assimilated alongside those from L1, compared to assimilation of L1 observations alone.

Funder

Natural Environment Research Council

Science and Technology Facilities Council

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3