Affiliation:
1. Department of Physics Imperial College London London UK
2. Space Research Institute Austrian Academy of Sciences Graz Austria
3. Austrian Space Weather Office GeoSphere Austria Graz Austria
Abstract
AbstractSevere space weather has the potential to cause significant socio‐economic impact and it is widely accepted that mitigating this risk requires more comprehensive observations of the Sun and heliosphere, enabling more accurate forecasting of significant events with longer lead‐times. In this context, it is now recognized that observations from the L5 Sun‐Earth Lagrange point (both remote and in situ) would offer considerable improvements in our ability to monitor and forecast space weather. Remote sensing from L5 allows for the observation of solar features earlier than at L1, providing early monitoring of active region development, as well as tracking of interplanetary coronal mass ejections through the inner heliosphere. In situ measurements at L5 characterize the solar wind's geoeffectiveness (particularly stream interaction regions), and can also be ingested into heliospheric models, improving their performance. The Vigil space weather mission is part of the ESA Space Safety Program and will provide a real‐time data stream for space weather services from L5 following its anticipated launch in the early 2030s. The interplanetary magnetic field is a key observational parameter, and here we describe the development of the Vigil magnetometer instrument for operational space weather monitoring at the L5 point. We summarize the baseline instrument capabilities, demonstrating how heritage from science missions has been leveraged to develop a low‐risk, high‐heritage instrument concept.
Publisher
American Geophysical Union (AGU)