The Mid‐Lithospheric Discontinuity Caused by Channel Flow in Proto‐Cratonic Mantle

Author:

Yang Haibin12ORCID,Artemieva Irina M.345ORCID,Thybo Hans356ORCID

Affiliation:

1. School of Earth Sciences Zhejiang University Hangzhou China

2. Research School of Earth Sciences Australian National University Canberra ACT Australia

3. SinoProbe Laboratory Chinese Academy of Geological Sciences Beijing China

4. Section of Marine Geodynamics GEOMAR Helmholtz Center for Ocean Research Kiel Germany

5. State Key Laboratory of Geological Processes and Mineral Resources School of Earth Sciences China University of Geosciences Wuhan China

6. Eurasia Institute of Earth Science Istanbul Technical University Istanbul Turkey

Abstract

AbstractGlobal geophysical observations show the presence of the enigmatic mid‐lithospheric discontinuity (MLD) at depths of ca. 80–150 km which may question the stability and internal structure of the continental lithosphere. While various mechanisms may explain the MLD, the dynamic processes leading to the seismic observations are unclear. Here we present a physical mechanism for the origin of MLD by channel flow in the cratonic mantle lithosphere, triggered by convective instabilities at cratonic margins in the Archean when the mantle was hot. Our numerical modeling shows that the top of the frozen‐in channel flow creates a shear zone at a depth comparable to the globally observed seismic MLD. Grain size reduction in the shear zone and accumulation of percolated melts or fluids along the channel top may reduce seismic wave speeds as observed below the MLD, while the channel flow itself may explain radial anisotropy of seismic wave speeds and change in direction of the seismic anisotropic fast axis. The proposed mechanism is valid for a broad range of physically realistic parameters and that MLD may have been preserved since its formation in the Archean. The intensity of the channel flow ceased with time due to secular cooling of the Earth's interior. The new mechanism may reshape our understanding of the evolution and stability of cratonic lithosphere.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3