Strong Physical Contrasts Across Two Mid‐Lithosphere Discontinuities Beneath the Northwestern United States: Evidence for Cratonic Mantle Metasomatism

Author:

Liu Tianze12ORCID,Chin Emily J.3ORCID,Shearer Peter1ORCID

Affiliation:

1. Institute of Geophysics and Planetary Physics Scripps Institution of Oceanography UC San Diego La Jolla CA USA

2. Department of Geology and Geophysics Woods Hole Oceanographic Institution Falmouth MA USA

3. Geosciences Research Division Scripps Institution of Oceanography UC San Diego La Jolla CA USA

Abstract

AbstractMid‐lithosphere discontinuities are seismic interfaces likely located within the lithospheric mantle of stable cratons, which typically represent velocities decreasing with depth. The origins of these interfaces are poorly understood due to the difficulties in both characterizing them seismically and reconciling the observations with thermal‐chemical models of cratons. Metasomatism of the cratonic lithosphere has been reported by numerous geochemical and petrological studies worldwide, yet its seismic signature remains elusive. Here, we identify two distinct mid‐lithosphere discontinuities at ∼87 and ∼117 km depth beneath the eastern Wyoming craton and the southwestern Superior craton by analyzing seismic data recorded by two longstanding stations. Our waveform modeling shows that the shallow and deep interfaces represent isotropic velocity drops of 2%–8% and 4%–9%, respectively, depending on the contributions from changes in radial anisotropy and density. By building a thermal‐chemical model including the regional xenolith thermobarometry constraints and the experimental phase‐equilibrium data of mantle metasomatism, we show that the shallow interface probably represents the metasomatic front, below which hydrous minerals such as amphibole and phlogopite are present, whereas the deep interface may be caused by the onset of carbonated partial melting. The hydrous minerals and melts are products of mantle metasomatism, with CO2‐H2O‐rich siliceous melt as a probable metasomatic reagent. Our results suggest that mantle metasomatism is probably an important cause of mid‐lithosphere discontinuities worldwide, especially near craton boundaries, where the mantle lithosphere may be intensely metasomatized by fluids and melts released by subducting slabs.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3