A New View of Shear Wavespeed and the Lithosphere‐Asthenosphere Boundary in the Southwestern United States

Author:

Golos E. M.12ORCID,Brunsvik B.3,Eilon Z.3ORCID,Fischer K. M.1ORCID,Byrnes J.4ORCID,Gaherty J.4ORCID

Affiliation:

1. Department of Earth, Environmental, and Planetary Science Brown University Providence RI USA

2. Now at Department of Geoscience University of Wisconsin—Madison Madison WI USA

3. Department of Earth Science University of California—Santa Barbara Santa Barbara CA USA

4. School of Earth and Sustainability Northern Arizona University Flagstaff AZ USA

Abstract

AbstractThe Southwestern United States experiences active deformation, seismicity, and magmatism, remarkable in an intraplate setting. The Basin and Range and Colorado Plateau (CP) are inferred to differ in lithospheric thickness, but modeling geophysical properties of the lithosphere, in particular the depth of the Lithosphere‐Asthenosphere Boundary (LAB), across the entirety of the region, has proved challenging. Here, we introduce a new model of 1‐D depth profiles in shear wavespeed, determined through a probabilistic joint inversion of information from Sp receiver functions and Rayleigh wave phase velocity. From these profiles we quantify the locations and Vs contrast of wavespeed gradients that represent boundaries such as the Moho, the LAB, and intralithospheric discontinuities. We infer a lithosphere that is thinner and lower in Vs in the Basin and Range. In the CP and farther north, the LAB is more gradual, deeper, and intermittently observed. We also observe Mid‐Lithospheric Discontinuities (MLDs) near the boundaries between the CP, Wyoming Craton, and Northern Basin and Range, as well as within the Craton. When both an MLD and LAB are observed, the Vs gradient associated with the LAB is narrower than expected. Finally, we image Positive Velocity Gradients beneath areas of thinner lithosphere, which are consistent with recent global observations that have been attributed to the base of a partially molten zone below the lithosphere. Overall, the picture of the lithosphere‐asthenosphere system that emerges is one of considerable structural complexity with a strong dependency on tectonic regime and geological history.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3