Affiliation:
1. Department of Earth Sciences and Southern California Earthquake Center University of Southern California Los Angeles CA USA
Abstract
AbstractEstablishing a baseline of ongoing secular velocity variations at the subsurface can improve the accuracy of detecting and interpreting short‐term velocity changes, and advance the understanding of observed seismic motions and the behavior of subsurface materials. Toward these goals, we develop and apply a deconvolved autocorrelation (DA) method to estimate regional daily and seasonal changes of seismic velocities in southern California. The DA method combines advantages of traditional autocorrelation and Horizontal‐to‐Vertical Spectral Ratio, and is used to analyze over 10 years of data recorded by 50 stations. The results indicate widespread daily and seasonal changes of up to 10% and 4%, respectively, in the top tens of meters of the crust. The thickness of the surface layer, distance from the coast, and topographic variations are important factors controlling the amplitudes of the resolved velocity variations. The results suggest that changes of soil moisture and thermoelastic strain are likely dominant factors affecting the daily and seasonal variations, respectively. The developed DA method can improve the accuracy and robustness of estimated changes of subsurface materials at other locations.
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献