Affiliation:
1. School of Earth Sciences and State Key Laboratory of Geological Processes and Mineral Resources China University of Geosciences Wuhan China
2. School of Earth Sciences Global Tectonic Center China University of Geosciences Wuhan China
Abstract
AbstractExtensive melt‐peridotite interactions had been documented in the lithospheric mantle beneath the North China Craton (NCC), a prime example of destroyed cratons in the world. Yet the impacts of melt‐peridotite interactions on the deformation and seismic anisotropy of the NCC upper mantle remain unclear. Here we studied in detail the microstructure, crystallographic preferred orientation (CPO) of minerals, and seismic properties of 26 peridotite xenoliths from the Damaping area of the NCC. The studied samples can be classified into two groups: weakly to nonfoliated and strongly foliated. Petrographic and microstructural observations suggest that multiple melt‐peridotite interactions and at least two stages of deformation had influenced samples from both microstructural groups. Dislocation creep in response to a transpression deformation led to the [010]‐fiber type olivine CPOs in most samples. Variable degrees of annealing followed the last stage of deformation. Due to a higher degree of melt‐peridotite interactions, which had promoted nondislocation creep, and more extensive annealing, olivine and pyroxene in the strongly foliated samples developed weaker CPOs. This in turn leads to weaker maximum P wave propagation anisotropy and S wave polarization anisotropy for this microstructural group. Our data, therefore, cast light on a strong control of intensity of melt‐peridotite interactions on deformation and seismic properties of the upper mantle beneath the NCC. If foliation and lineation are vertical and horizontal, respectively, the measured SKS splitting parameters can be well explained by the “fossil” anisotropy frozen in the lithospheric mantle, with no need to invoke asthenospheric flow as a source of the anisotropy.
Funder
National Natural Science Foundation of China
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献