Affiliation:
1. Department of Earth Sciences Indian Institute of Technology Kanpur Kanpur India
Abstract
AbstractSilicate and carbonate weathering reactions consume atmospheric CO2 depending on the type of weathering agents, namely carbonic (H2CO3), sulfuric (H2SO4), and nitric acids (HNO3), and have potential climate implications. However, the importance of HNO3 in weathering processes in the Himalayan glacierized basins has not been examined yet but is critical to better constrain the concomitant short (<103 years) and long‐term (>106 years) variability in the carbon cycle as it can drive negative feedback to a climate. By analyzing time‐series hydro‐geochemical data of proglacial meltwater in the Ganga headwaters of Central Himalaya, we demonstrate that the weathering rate of carbonate minerals is increased 1.06 times when the role of HNO3 is considered together with H2CO3 and H2SO4 in comparison to the role of H2CO3 and H2SO4. However, we also observe that the CO2 drawdown rate decreases 1.13 times and 1.06 times when the role of all three acids is considered in silicate and carbonate weathering reactions, respectively, compared to the CO2 drawdown rates linked to the role of H2CO3 and H2SO4. Moreover, the involvement of HNO3 in chemical weathering can reduce the inorganic global carbon sink by releasing CO2 into the ocean‐atmosphere system. We conclude that HNO3‐mediated chemical weathering reactions are important processes that alter the geologic carbon cycle of high‐altitude glacierized Himalayan catchments as well as on a global scale.
Funder
Science and Engineering Research Board
Publisher
American Geophysical Union (AGU)
Subject
Geochemistry and Petrology,Geophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献