CO2 Consumption Rates in the Glacierized Himalayan Headwaters: The Importance of Sulfuric and Nitric Acid‐Mediated Chemical Weathering Reactions in Geologic Carbon Cycle

Author:

Roy Nita1ORCID,Sen Indra S.1ORCID

Affiliation:

1. Department of Earth Sciences Indian Institute of Technology Kanpur Kanpur India

Abstract

AbstractSilicate and carbonate weathering reactions consume atmospheric CO2 depending on the type of weathering agents, namely carbonic (H2CO3), sulfuric (H2SO4), and nitric acids (HNO3), and have potential climate implications. However, the importance of HNO3 in weathering processes in the Himalayan glacierized basins has not been examined yet but is critical to better constrain the concomitant short (<103 years) and long‐term (>106 years) variability in the carbon cycle as it can drive negative feedback to a climate. By analyzing time‐series hydro‐geochemical data of proglacial meltwater in the Ganga headwaters of Central Himalaya, we demonstrate that the weathering rate of carbonate minerals is increased 1.06 times when the role of HNO3 is considered together with H2CO3 and H2SO4 in comparison to the role of H2CO3 and H2SO4. However, we also observe that the CO2 drawdown rate decreases 1.13 times and 1.06 times when the role of all three acids is considered in silicate and carbonate weathering reactions, respectively, compared to the CO2 drawdown rates linked to the role of H2CO3 and H2SO4. Moreover, the involvement of HNO3 in chemical weathering can reduce the inorganic global carbon sink by releasing CO2 into the ocean‐atmosphere system. We conclude that HNO3‐mediated chemical weathering reactions are important processes that alter the geologic carbon cycle of high‐altitude glacierized Himalayan catchments as well as on a global scale.

Funder

Science and Engineering Research Board

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3