Isotope Hydrograph Separation Reveals Rainfall on the Glaciers Will Enhance Ice Meltwater Discharge to the Himalayan Rivers

Author:

Roy Nita1ORCID,Sen Indra S.1ORCID,Boral Soumita12ORCID,Shukla Tanuj13ORCID,Velu Vinoj4

Affiliation:

1. Department of Earth Sciences Indian Institute of Technology Kanpur Kanpur UP India

2. Interdisciplinary Centre for Water Research Indian Institute of Science Bangalore Bangalore Karnataka India

3. State Key Laboratory of Cryospheric Science Northwest Institute of Eco‐Environment and Resources Chinese Academy of Science Lanzhou China

4. School of Earth, Ocean and Climate Sciences Indian Institute of Technology Bhubaneswar Bhubaneswar Odisha India

Abstract

AbstractThe Indian Summer Monsoon (ISM) and meltwater from the Himalayan are the two most important sources of water in the Indian subcontinent. However, the impact of ISM on Himalayan glaciers and subsequent stream hydrology remains largely unknown. To provide new insight into the impact of rainfall on glacial hydrology, here we present hydro‐meteorological and time‐series observations of meltwater stable water isotope compositions from the snout of the Chorabari glacier in the Upper Ganga Basin, Central Himalayas across the ablation season corresponding to 2019. We observe that rainfall events (>2 mm d−1) on the glacier enhance discharge driven by ice meltwater in River Mandakini. Energy balance calculations reveal that one of the drivers behind enhanced ice meltwater contribution could be rain‐induced melting of the glacier where rainfall on the ice surface melts the glacier producing up to 13% of the total discharge at the glacier snout. Further, rainfall on glacier surface have other control on glacial processes—for example, snow metamorphism, ice flow dynamics such as short‐term acceleration in ice speed flow, and reorganization of the englacial and subglacial drainage network—that are poorly studied and needs further investigation. We conclude rainfall events on the glacier have a complex control on mountain hydrology. This study, therefore, provides an interpretative framework that calls for additional assessments of the direct and indirect impact of rainfall in glacial hydrology.

Funder

Ministry of Earth Sciences

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3