Affiliation:
1. LASG Institute of Atmospheric Physics Chinese Academy of Sciences Beijing China
2. College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China
3. Atmospheric Sciences and Global Change Division Pacific Northwest National Laboratory Richland WA USA
Abstract
AbstractReliable regional temperature projections including heat extremes are essential for climate change adaptation and mitigation. Taking China as an example, simple averages from Coupled Model Intercomparison Project Phase 6 (CMIP6) models project high warming due to sampling many high climate sensitivities in the ensemble. Here, we develop an emergent constraint (EC) framework to obtain constrained mean and daily maximum temperature (TXx) warming over China by using observed global warming and local residual warming. The constrained annual mean and TXx warming over China (2.33°C [1.61–3.05°C] and 2.31°C [1.21–2.99°C]) are 0.65°C [0.04–1.76°C] and 0.63°C [–0.50–2.39°C], respectively, lower than raw projections (2.98°C [1.85–4.22°C] and 2.94°C [2.04–4.39°C]) for 2080–2099 under the intermediate‐emission scenario. Approximately half model uncertainty is reduced after constraint. The land area (population) experiencing temperature extremes in our metric is 78% (85%) of the raw projections. Our results imply a lower impact of extreme heat than implied by current raw CMIP6 projections.
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献