Abstract
AbstractClimate projections are essential for decision-making but contain non-negligible uncertainty. To reduce projection uncertainty over Asia, where half the world’s population resides, we develop emergent constraint relationships between simulated temperature (1970–2014) and precipitation (2015–2100) growth rates using 27 CMIP6 models under four Shared Socioeconomic Pathways. Here we show that, with uncertainty successfully narrowed by 12.1–31.0%, constrained future precipitation growth rates are 0.39 ± 0.18 mm year−1 (29.36 mm °C−1, SSP126), 0.70 ± 0.22 mm year−1 (20.03 mm °C−1, SSP245), 1.10 ± 0.33 mm year−1 (17.96 mm °C−1, SSP370) and 1.42 ± 0.35 mm year−1 (17.28 mm °C−1, SSP585), indicating overestimates of 6.0–14.0% by the raw CMIP6 models. Accordingly, future temperature and total evaporation growth rates are also overestimated by 3.4–11.6% and −2.1–13.0%, respectively. The slower warming implies a lower snow cover loss rate by 10.5–40.2%. Overall, we find the projected increase in future water availability is overestimated by CMIP6 over Asia.
Funder
National Natural Science Foundation of China
National Key R&D Program of China
UK Research and Innovation
UK NERC Global Challenges Research Fund
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献