Global Self‐Similar Scaling of Terrestrial Carbon With Aridity

Author:

Yin Jun12ORCID,Porporato Amilcare34ORCID

Affiliation:

1. Key Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources (HYMED)/CIC‐FEMD Nanjing University of Information Science and Technology Nanjing China

2. School of Hydrology and Water Resources Nanjing University of Information Science and Technology Nanjing China

3. Department of Civil and Environmental Engineering Princeton University Princeton NJ USA

4. High Meadows Environmental Institute Princeton University Princeton NJ USA

Abstract

AbstractWhile it is well known that water availability controls vegetation growth and soil microbial activity, how aridity affects ecosystem carbon patterns is not completely understood. Toward a more quantitative assessment of terrestrial carbon stocks, here we apply dimensional analysis and scaling to the global joint distribution of terrestrial carbon stock, obtained from international survey data and harmonized global maps. The results show a remarkable self‐similar behavior of the global carbon stock with dryness index, whereby the key statistics (e.g., mean, quantiles, and standard deviation) of carbon stock tend to scale with the hydroclimatic regime (i.e., aridity) via a universal exponent. Such a scaling reflects the strong coupling between the hydrological cycle and biogeochemical process and enables robust predictions of carbon stocks as a function of aridity only. When normalized by its averages in the corresponding hydroclimatic regime, the carbon stock distributions collapse onto a single double Pareto lognormal distribution, often used in economics to describe income. The presence of this distribution in completely different physical contexts, such as biogeochemistry and economics, hints at generating mechanisms that transcend the details of the specific stock being considered.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Nanjing University of Information Science and Technology

Princeton University

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3