Improving E3SM Land Model Photosynthesis Parameterization via Satellite SIF, Machine Learning, and Surrogate Modeling

Author:

Chen Anping1ORCID,Ricciuto Daniel2ORCID,Mao Jiafu2ORCID,Wang Jiawei3,Lu Dan2ORCID,Meng Fandong4

Affiliation:

1. Department of Biology and Graduate Degree Program in Ecology Colorado State University CO Fort Collins USA

2. Environmental Sciences Division Climate Change Science Institute Oak Ridge National Laboratory TN Oak Ridge USA

3. College of Urban and Environmental Sciences Peking University Beijing China

4. State Key Laboratory of Tibetan Plateau Earth System and Resources Environment (TPESRE), Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing China

Abstract

AbstractThe parameterization of key photosynthesis parameters is one of the key uncertain sources in modeling ecosystem gross primary productivity (GPP). Solar‐induced chlorophyll fluorescence (SIF) offers a good proxy for GPP since it marks the actual process of photosynthesis; while machine learning (ML) provides a robust approach to model the GPP‐SIF relationship. Here, we trained the boosted regressing tree (BRT) and the Random Forest ML models with Greenhouse Gases Observing Satellite SIF data and in situ GPP observations from 49 eddy covariance towers. These trained ML GPP‐SIF models were fed into the Energy Exascale Earth System Model (E3SM) Land Model (ELM) to generate ELM‐simulated global SIF estimates, which were then benchmarked against satellite SIF observations with a surrogate modeling approach. Our results indicated good modeling performance of the ML‐based GPP‐SIF relationship. The ELM model when fed with the ML GPP‐SIF models also can well predict the spatial‐temporal variations in SIF. We also found high model accuracy for the surrogate modeling. Model parameter sensitivity analysis suggested that the fraction of leaf nitrogen in RuBisCO (flnr) is the most sensitive parameter to the SIF; other sensitive parameters include the Ball‐Berry stomatal conductance slope (mbbopt) and the vcmax entropy (vcmaxse). The posterior uncertainty in simulated GPP was greatly reduced after benchmarking, and the model produced improved spatial patterns of mean GPP relative to FLUXCOM GPP. Our integrated approach provides a new avenue for improving land models and using remote‐sensing SIF, which can be further improved in the future with more ground‐ and satellite‐based observations.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3