Satellite and In Situ Observations for Advancing Global Earth Surface Modelling: A Review

Author:

Balsamo GianpaoloORCID,Agusti-Panareda AnnaORCID,Albergel ClementORCID,Arduini Gabriele,Beljaars Anton,Bidlot JeanORCID,Blyth Eleanor,Bousserez Nicolas,Boussetta Souhail,Brown Andy,Buizza Roberto,Buontempo Carlo,Chevallier FrédéricORCID,Choulga Margarita,Cloke Hannah,Cronin Meghan F.ORCID,Dahoui Mohamed,De Rosnay PatriciaORCID,Dirmeyer Paul A.ORCID,Drusch Matthias,Dutra EmanuelORCID,Ek Michael B.,Gentine Pierre,Hewitt Helene,Keeley Sarah P.E.ORCID,Kerr YannORCID,Kumar SujayORCID,Lupu Cristina,Mahfouf Jean-François,McNorton JoeORCID,Mecklenburg Susanne,Mogensen Kristian,Muñoz-Sabater JoaquínORCID,Orth Rene,Rabier Florence,Reichle RolfORCID,Ruston BenORCID,Pappenberger FlorianORCID,Sandu Irina,Seneviratne Sonia I.ORCID,Tietsche Steffen,Trigo Isabel F.ORCID,Uijlenhoet RemkoORCID,Wedi Nils,Woolway R. Iestyn,Zeng XubinORCID

Abstract

In this paper, we review the use of satellite-based remote sensing in combination with in situ data to inform Earth surface modelling. This involves verification and optimization methods that can handle both random and systematic errors and result in effective model improvement for both surface monitoring and prediction applications. The reasons for diverse remote sensing data and products include (i) their complementary areal and temporal coverage, (ii) their diverse and covariant information content, and (iii) their ability to complement in situ observations, which are often sparse and only locally representative. To improve our understanding of the complex behavior of the Earth system at the surface and sub-surface, we need large volumes of data from high-resolution modelling and remote sensing, since the Earth surface exhibits a high degree of heterogeneity and discontinuities in space and time. The spatial and temporal variability of the biosphere, hydrosphere, cryosphere and anthroposphere calls for an increased use of Earth observation (EO) data attaining volumes previously considered prohibitive. We review data availability and discuss recent examples where satellite remote sensing is used to infer observable surface quantities directly or indirectly, with particular emphasis on key parameters necessary for weather and climate prediction. Coordinated high-resolution remote-sensing and modelling/assimilation capabilities for the Earth surface are required to support an international application-focused effort.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3