Storm Surge Modeling as an Application of Local Time‐Stepping in MPAS‐Ocean

Author:

Lilly Jeremy R.1ORCID,Capodaglio Giacomo2ORCID,Petersen Mark R.2ORCID,Brus Steven R.3ORCID,Engwirda Darren4ORCID,Higdon Robert L.1

Affiliation:

1. Department of Mathematics Oregon State University Corvallis OR USA

2. Computational Physics and Methods Group Los Alamos National Laboratory Los Alamos NM USA

3. Mathematics and Computer Science Division Argonne National Laboratory Lemont IL USA

4. Fluid Dynamics and Solid Mechanics Group Los Alamos National Laboratory Los Alamos NM USA

Abstract

AbstractThis paper presents the first practical application of local time‐stepping (LTS) schemes in the Model for Prediction Across Scales‐Ocean (MPAS‐O). We use LTS schemes in a single‐layer, global ocean model that predicts the storm surge around the eastern coast of the United States during Hurricane Sandy. The variable‐resolution meshes used are of unprecedentedly high resolution in MPAS‐O, containing cells as small as 125 m wide in Delaware Bay. It is shown that a particular, third‐order LTS scheme (LTS3) produces sea‐surface height solutions that are of comparable quality to solutions produced by the classical four‐stage, fourth‐order Runge‐Kutta method (RK4) with a uniform time step on the same meshes. Furthermore, LTS3 is up to 35% faster in the best cases considered, where the number of cells using the coarse time‐step relative to those using the fine time‐step is as low as 1:1. This shows that LTS schemes are viable for use in MPAS‐O with the added benefit of substantially less computational cost. The results of these performance experiments inform us of the requirements for efficient mesh design and configuration of LTS regions for LTS schemes. In particular, we see that for LTS to be efficient on a given mesh, it is important to have enough cells using the coarse time‐step relative to those using the fine time‐step, typically at least 1:5 to see an increase in performance.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

Reference36 articles.

1. Solution of the tidal equations for the M 2 and S 2 tides in the world oceans from a knowledge of the tidal potential alone

2. Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model

3. Primer on global internal tide and internal gravity wave continuum modeling in HYCOM and MITGCM;Arbic B. K.;New Frontiers in Operational Oceanography,2018

4. Global Barotropic Tide Modeling Using Inline Self‐Attraction and Loading in MPAS‐Ocean

5. Capodaglio G. Lilly J. R. &Petersen M. R.(2022).MPAS‐Model LTS Source Code (Commit: 4e1f5a3). Zenodo.https://doi.org/10.5281/zenodo.6904061

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3