Synthesizing Sea Surface Temperature and Satellite Altimetry Observations Using Deep Learning Improves the Accuracy and Resolution of Gridded Sea Surface Height Anomalies

Author:

Martin Scott A.1ORCID,Manucharyan Georgy E.1ORCID,Klein Patrice23

Affiliation:

1. School of Oceanography University of Washington Seattle WA USA

2. Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA

3. LMD/IPSL CNRS Ecole Normale Supérieure PSL Research University Paris France

Abstract

AbstractGridded sea surface height (SSH) maps estimated from satellite altimetry are widely used for estimating surface ocean geostrophic currents. Satellite altimeters observe SSH along one‐dimensional tracks widely spaced in space and time, making accurately reconstructing the two‐dimensional (2D) SSH field challenging. Traditionally, SSH is mapped using optimal interpolation (OI). However, OI artificially smooths the SSH field leading to high mapping errors in regions with rapidly‐evolving mesoscale features such as western boundary currents. Motivated by the dynamical relation between SSH and sea surface temperature (SST) and the notion that even the chaotic evolution of mesoscale ocean turbulence may contain repeating patterns, we outline a deep learning (DL) approach where a neural network is trained to reconstruct 2D SSH by synthesizing altimetry and SST observations. In the Gulf Stream Extension region, dominated by mesoscale variability, our DL method substantially improves the SSH reconstruction compared to existing methods. Our SSH map has 17% lower root‐mean‐square error and resolves spatial scales 30% smaller than OI compared against independent altimeter observations. Surface geostrophic currents calculated from our map are closer to surface drifter observations and appear qualitatively more realistic, with stronger currents, a clearer separation between the Gulf Stream and neighboring eddies, and the appearance of smaller coherent eddies missed by other methods. Our map yields significant re‐estimations of important dynamical quantities such as eddy kinetic energy, vorticity, and strain rate. Applying our DL method to produce a global SSH product may provide a more accurate and higher resolution product for studying mesoscale ocean turbulence.

Funder

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3