Learning Sea Surface Height Interpolation From Multi‐Variate Simulated Satellite Observations

Author:

Archambault Théo12ORCID,Filoche Arthur3,Charantonis Anastase245,Béréziat Dominique1ORCID,Thiria Sylvie2

Affiliation:

1. Sorbonne Université CNRS LIP6 Paris France

2. Sorbonne Université CNRS IRD MNHN LOCEAN Paris France

3. University of Western Australia, Oceans Institute Perth Australia

4. ENSIIE CNRS LaMME Evry France

5. Inria Paris France

Abstract

AbstractSatellite‐based remote sensing missions have revolutionized our understanding of the Ocean state and dynamics. Among them, space‐borne altimetry provides valuable Sea Surface Height (SSH) measurements, used to estimate surface geostrophic currents. Due to the sensor technology employed, important gaps occur in SSH observations. Complete SSH maps are produced using linear Optimal Interpolations (OI) such as the widely used Data Unification and Altimeter Combination System (duacs). On the other hand, Sea Surface Temperature (SST) products have much higher data coverage and SST is physically linked to geostrophic currents through advection. We propose a new multi‐variate Observing System Simulation Experiment (OSSE) emulating 20 years of SSH and SST satellite observations. We train an Attention‐Based Encoder‐Decoder deep learning network (abed) on this data, comparing two settings: one with access to ground truth during training and one without. On our OSSE, we compare abed reconstructions when trained using either supervised or unsupervised loss functions, with or without SST information. We evaluate the SSH interpolations in terms of eddy detection. We also introduce a new way to transfer the learning from simulation to observations: supervised pre‐training on our OSSE followed by unsupervised fine‐tuning on satellite data. Based on real SSH observations from the Ocean Data Challenge 2021, we find that this learning strategy, combined with the use of SST, decreases the root mean squared error by 24% compared to OI.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3