A Non‐Column Based, Fully Unstructured Implementation of Kessler's Microphysics With Warm Rain Using Continuous and Discontinuous Spectral Elements

Author:

Tissaoui Yassine1ORCID,Marras Simone1,Quaini Annalisa2,de Brangaca Alves Felipe A. V.3,Giraldo Francis X.3

Affiliation:

1. Department of Mechanical Engineering New Jersey Institute of Technology Newark NJ USA

2. Department of Mathematics University of Houston Houston TX USA

3. Department of Applied Mathematics Naval Postgraduate School Monterey CA USA

Abstract

AbstractNumerical weather prediction is pushing the envelope of grid resolution at local and global scales alike. Aiming to model topography with higher precision, a handful of articles introduced unstructured vertical grids and tested them for dry atmospheres. The next step toward effective high‐resolution unstructured grids for atmospheric modeling requires that also microphysics is independent of any vertical columns, in contrast to what is ubiquitous across operational and research models. In this paper, we present a non‐column based continuous and discontinuous spectral element implementation of Kessler's microphysics with warm rain. We test the proposed algorithm against standard three‐dimensional benchmarks for precipitating clouds and show that the results are comparable with those presented in the literature across all of the tested effective resolutions. While presented for both continuous and discontinuous spectral elements in this paper, the method that we propose can be adapted to any numerical method used in other codes, as long as the code can already handle vertically unstructured grids.

Funder

National Science Foundation

Office of Naval Research

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3