A GPU-accelerated continuous and discontinuous Galerkin non-hydrostatic atmospheric model

Author:

Abdi Daniel S1,Wilcox Lucas C1,Warburton Timothy C2,Giraldo Francis X1

Affiliation:

1. Department of Applied Mathematics, Naval Postgraduate School, CA, USA

2. Department of Mathematics, Virginia Tech University, VA, USA

Abstract

We present a Graphics Processing Unit (GPU)-accelerated nodal discontinuous Galerkin method for the solution of the three-dimensional Euler equations that govern the motion and thermodynamic state of the atmosphere. Acceleration of the dynamical core of atmospheric models plays an important practical role in not only getting daily forecasts faster, but also in obtaining more accurate (high resolution) results within a given simulation time limit. We use algorithms suitable for the single instruction multiple thread architecture of GPUs to accelerate our model by two orders of magnitude relative to one core of a CPU. Tests on one node of the Titan supercomputer show a speedup of up to 15 times using the K20X GPU as compared to that on the 16-core AMD Opteron CPU. The scalability of the multi-GPU implementation is tested using 16,384 GPUs, which resulted in a weak scaling efficiency of about 90%. Finally, the accuracy and performance of our GPU implementation is verified using several benchmark problems representative of different scales of atmospheric dynamics.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3