Combining Stochastic Parameterized Reduced‐Order Models With Machine Learning for Data Assimilation and Uncertainty Quantification With Partial Observations

Author:

Mou Changhong1,Smith Leslie M.12,Chen Nan1ORCID

Affiliation:

1. Department of Mathematics University of Wisconsin‐Madison Madison WI USA

2. Department of Engineering Physics University of Wisconsin‐Madison Madison WI USA

Abstract

AbstractA hybrid data assimilation algorithm is developed for complex dynamical systems with partial observations. The method starts with applying a spectral decomposition to the entire spatiotemporal fields, followed by creating a machine learning model that builds a nonlinear map between the coefficients of observed and unobserved state variables for each spectral mode. A cheap low‐order nonlinear stochastic parameterized extended Kalman filter (SPEKF) model is employed as the forecast model in the ensemble Kalman filter to deal with each mode associated with the observed variables. The resulting ensemble members are then fed into the machine learning model to create an ensemble of the corresponding unobserved variables. In addition to the ensemble spread, the training residual in the machine learning‐induced nonlinear map is further incorporated into the state estimation, advancing the diagnostic quantification of the posterior uncertainty. The hybrid data assimilation algorithm is applied to a precipitating quasi‐geostrophic (PQG) model, which includes the effects of water vapor, clouds, and rainfall beyond the classical two‐level QG model. The complicated nonlinearities in the PQG equations prevent traditional methods from building simple and accurate reduced‐order forecast models. In contrast, the SPEKF forecast model is skillful in recovering the intermittent observed states, and the machine learning model effectively estimates the chaotic unobserved signals. Utilizing the calibrated SPEKF and machine learning models under a moderate cloud fraction, the resulting hybrid data assimilation remains reasonably accurate when applied to other geophysical scenarios with nearly clear skies or relatively heavy rainfall, implying the robustness of the algorithm for extrapolation.

Funder

Division of Mathematical Sciences

Office of Naval Research

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3