Stochastic Parameterization: Toward a New View of Weather and Climate Models

Author:

Berner Judith1,Achatz Ulrich2,Batté Lauriane3,Bengtsson Lisa4,Cámara Alvaro de la1,Christensen Hannah M.5,Colangeli Matteo6,Coleman Danielle R. B.1,Crommelin Daan7,Dolaptchiev Stamen I.2,Franzke Christian L. E.8,Friederichs Petra9,Imkeller Peter10,Järvinen Heikki11,Juricke Stephan5,Kitsios Vassili12,Lott François13,Lucarini Valerio14,Mahajan Salil15,Palmer Timothy N.5,Penland Cécile16,Sakradzija Mirjana17,von Storch Jin-Song18,Weisheimer Antje19,Weniger Michael9,Williams Paul D.20,Yano Jun-Ichi21

Affiliation:

1. National Center for Atmospheric Research,* Boulder, Colorado

2. Institut für Atmosphäre und Umwelt, Goethe-Universität, Frankfurt am Main, Germany

3. CNRM-GAME, Météo-France/CNRS, Toulouse, France

4. Swedish Meteorological and Hydrological Institute, Norrköping, Sweden

5. Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, United Kingdom

6. Gran Sasso Science Institute, L’Aquila, Italy

7. Centrum Wiskunde en Informatica, and Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, Netherlands

8. Meteorological Institute, and Centre for Earth System Research and Sustainability, University of Hamburg, Hamburg, Germany

9. Meteorological Institute, University of Bonn, Bonn, Germany

10. Institut für Mathematik, Humboldt-Universität zu Berlin, Berlin, Germany

11. Department of Physics, University of Helsinki, Helsinki, Finland

12. Oceans and Atmosphere Flagship, CSIRO, Aspendale, Victoria, Australia

13. Laboratoire de Météorologie Dynamique (CNRS/IPSL), Ecole Normale Supérieure, Paris, France

14. Meteorological Institute, and Centre for Earth System Research and Sustainability, University of Hamburg, Hamburg, Germany, and Department of Mathematics and Statistics, University of Reading, Reading, United Kingdom

15. Oak Ridge National Laboratory, Oak Ridge, Tennessee

16. Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

17. Max Planck Institute for Meteorology, and Hans-Ertel-Centre for Weather Research, Deutscher Wetterdienst, Hamburg, Germany

18. Max Planck Institute for Meteorology, Hamburg, Germany

19. National Centre for Atmospheric Science, and Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, and ECMWF, Reading, United Kingdom

20. Department of Meteorology, University of Reading, Reading, United Kingdom

21. GAME-CNRM, CNRS, Météo-France, Toulouse, France

Abstract

Abstract The last decade has seen the success of stochastic parameterizations in short-term, medium-range, and seasonal forecasts: operational weather centers now routinely use stochastic parameterization schemes to represent model inadequacy better and to improve the quantification of forecast uncertainty. Developed initially for numerical weather prediction, the inclusion of stochastic parameterizations not only provides better estimates of uncertainty, but it is also extremely promising for reducing long-standing climate biases and is relevant for determining the climate response to external forcing. This article highlights recent developments from different research groups that show that the stochastic representation of unresolved processes in the atmosphere, oceans, land surface, and cryosphere of comprehensive weather and climate models 1) gives rise to more reliable probabilistic forecasts of weather and climate and 2) reduces systematic model bias. We make a case that the use of mathematically stringent methods for the derivation of stochastic dynamic equations will lead to substantial improvements in our ability to accurately simulate weather and climate at all scales. Recent work in mathematics, statistical mechanics, and turbulence is reviewed; its relevance for the climate problem is demonstrated; and future research directions are outlined.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 269 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3