Fitting Cumulus Cloud Size Distributions From Idealized Cloud Resolving Model Simulations

Author:

Savre Julien1ORCID,Craig George1ORCID

Affiliation:

1. Physics Department Meteorological Institute Ludwig‐Maximilians‐Universität Munich Germany

Abstract

AbstractWhereas it is now widely accepted that cumulus cloud sizes are power‐law distributed, characteristic exponents reported in the literature vary greatly, generally taking values between 1 and >3. Although these differences might be explained by variations in environmental conditions or physical processes organizing the cloud ensembles, the use of improper fitting methods may also introduce large biases. To address this issue, we propose to use a combination of maximum likelihood estimation and goodness‐of‐fit tests to provide more robust power‐law fits while systematically identifying the size range over which these fits are valid. The procedure is applied to cloud size distributions extracted from two idealized high‐resolution simulations displaying different organization characteristics. Overall, power‐laws are found to be outperformed by alternative distributions in almost all situations. When clouds are identified based on a condensed water path threshold, using power‐laws with an exponential cutoff yields the best results as it provides superior fits in the tail of the cloud size distributions. For clouds identified using a combination of water content and updraft velocity thresholds in the free troposphere, no substantial improvement over pure power‐laws can be found when considering more complex two‐parameter distributions. In this context however, exponential distributions provide results that are as good as, if not better than power‐laws. Finally, it is demonstrated that the emergence of scale free behaviors in cloud size distributions is related to exponentially distributed cloud cores merging as they are brought closer to each other by underlying organizing mechanisms.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3