Spatial Scale Dependence of Tropical Cyclone Damage Function: Evidence From the Mainland of China

Author:

Tang Rumei12ORCID,Wu Jidong123ORCID,Ding Wei1,Nie Juan4

Affiliation:

1. School of National Safety and Emergency Management Beijing Normal University Beijing China

2. State Key Laboratory of Earth Surface Processes and Resource Ecology Beijing Normal University Beijing China

3. Academy of Plateau Science and Sustainability People's Government of Qinghai Province and Beijing Normal University Xining China

4. National Disaster Reduction Center of China Ministry of Emergency Management Beijing China

Abstract

AbstractTropical cyclone (TC) damage function (DF) is widely used to model TC‐event level damage and thus assess the TC risk for a country or region. The scalability of these DFs at more localized scales, such as the province scale, has not been systematically explored. We use a unique Chinese data set to examine the damage at the TC‐event scale and province scale. Our results show that the parameters and performance of TC DF are spatially dependent. For a sigmoidal DF, the parameter dependence is manifested by a flatter curve calibrated on the TC‐event scale compared to the province scale. In the case of a power‐law DF, the dependence of its parameters is evident in the statistically more significant coefficients of the explanatory variables that are aggregated to the TC‐event scale, compared to the province scale. Performance comparison results further reveal that the scale dependence of performance is related to the type of DF. Integrating hazard, exposure, and vulnerability, the power‐law DF complements the typical sigmoidal DF, producing more accurate estimates of direct economic loss and annual average damage at both the TC‐event and province scales. However, its performance, compared to that of the sigmoidal DF, is more influenced by the scale at which it is calibrated. Our findings elucidate scale‐related research questions in TC risk assessment, offer insights into the selection of DFs, and inspire the future prospect of using multiple DFs to reduce the functional uncertainty.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3