Climate Change Signal in Atlantic Tropical Cyclones Today and Near Future

Author:

Lee Chia‐Ying1ORCID,Sobel Adam H.12ORCID,Tippett Michael K.2ORCID,Camargo Suzana J.1ORCID,Wüest Marc3,Wehner Michael4ORCID,Murakami Hiroyuki5

Affiliation:

1. Lamont‐Doherty Earth Observatory Columbia University Palisades NY USA

2. Department of Applied Physics and Applied Mathematics Columbia University New York NY USA

3. Swiss Re Zurich Switzerland

4. Lawrence Berkeley National Laboratory Berkeley CA USA

5. Geophysical Fluid Dynamics Laboratory Princeton NJ USA

Abstract

AbstractThis manuscript discusses the challenges in detecting and attributing recently observed trends in the Atlantic tropical cyclone (TC) and the epistemic uncertainty we face in assessing future risk. We use synthetic storms downscaled from five CMIP5 models by the Columbia HAZard model (CHAZ), and directly simulated storms from high‐resolution climate models. We examine three aspects of recent TC activity: the upward trend and multi‐decadal oscillation of the annual frequency, the increase in storm wind intensity, and the decrease in forward speed. Some data sets suggest that these trends and oscillation are forced while others suggest that they can be explained by natural variability. Projections under warming climate scenarios also show a wide range of possibilities, especially for the annual frequencies, which increase or decrease depending on the choice of moisture variable used in the CHAZ model and on the choice of climate model. The uncertainties in the annual frequency lead to epistemic uncertainties in TC risk assessment. Here, we investigate the potential for reduction of these epistemic uncertainties through a statistical practice, namely likelihood analysis. We find that historical observations are more consistent with the simulations with increasing frequency than those with decreasing frequency, but we are not able to rule out the latter. We argue that the most rational way to treat epistemic uncertainty is to consider all outcomes contained in the results. In the context of risk assessment, since the results contain possible outcomes in which TC risk is increasing, this view implies that the risk is increasing.

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3