Epistemic uncertainties and natural hazard risk assessment – Part 2: What should constitute good practice?

Author:

Beven Keith J.ORCID,Aspinall Willy P.,Bates Paul D.ORCID,Borgomeo Edoardo,Goda KatsuichiroORCID,Hall Jim W.ORCID,Page Trevor,Phillips Jeremy C.,Simpson Michael,Smith Paul J.,Wagener ThorstenORCID,Watson Matt

Abstract

Abstract. Part 1 of this paper has discussed the uncertainties arising from gaps in knowledge or limited understanding of the processes involved in different natural hazard areas. Such deficits may include uncertainties about frequencies, process representations, parameters, present and future boundary conditions, consequences and impacts, and the meaning of observations in evaluating simulation models. These are the epistemic uncertainties that can be difficult to constrain, especially in terms of event or scenario probabilities, even as elicited probabilities rationalized on the basis of expert judgements. This paper reviews the issues raised by trying to quantify the effects of epistemic uncertainties. Such scientific uncertainties might have significant influence on decisions made, say, for risk management, so it is important to examine the sensitivity of such decisions to different feasible sets of assumptions, to communicate the meaning of associated uncertainty estimates, and to provide an audit trail for the analysis. A conceptual framework for good practice in dealing with epistemic uncertainties is outlined and the implications of applying the principles to natural hazard assessments are discussed. Six stages are recognized, with recommendations at each stage as follows: (1) framing the analysis, preferably with input from potential users; (2) evaluating the available data for epistemic uncertainties, especially when they might lead to inconsistencies; (3) eliciting information on sources of uncertainty from experts; (4) defining a workflow that will give reliable and accurate results; (5) assessing robustness to uncertainty, including the impact on any decisions that are dependent on the analysis; and (6) communicating the findings and meaning of the analysis to potential users, stakeholders, and decision makers. Visualizations are helpful in conveying the nature of the uncertainty outputs, while recognizing that the deeper epistemic uncertainties might not be readily amenable to visualizations.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference121 articles.

1. Abbs, D. J.: A numerical modeling study to investigate the assumptions used in the calculation of probable maximum precipitation, Water Resour. Res., 35, 785–796, https://doi.org/10.1029/1998WR900013, 1999.

2. Agumya, A. and Hunter, G. J.: Responding to the consequences of uncertainty in geographical data, Int. J. Geogr. Info. Sci., 16, 405–417, 2002.

3. Almeida, S., Holcombe, E. A., Pianosi, F., and Wagener, T.: Dealing with deep uncertainties in landslide modelling for disaster risk reduction under climate change, Nat. Hazards Earth Syst. Sci., 17, 225–241, https://doi.org/10.5194/nhess-17-225-2017, 2017.

4. Aspinall, W. and Blong, R.: Volcanic Risk Management, Chapter 70 in: The Encyclopedia of Volcanoes, edited by: Sigurdsson, H., Houghton, B., McNutt, S.,Rymer, H., and Stix, J, 2nd Edition, Academic Press ISBN 978-0-12-385938-9, 1215–1234, 2015.

5. Aspinall, W. P. and Cooke, R. M.: Expert Elicitation and Judgement, in: Risk and Uncertainty assessment in Natural Hazards, edited by: Rougier, J. C., Sparks, R. S. J., and Hill, L., Cambridge University Press, Chapter 4, 64–99, 2013.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3