Uncertain Spatial Pattern of Future Land Use and Land Cover Change and Its Impacts on Terrestrial Carbon Cycle Over the Arctic–Boreal Region of North America

Author:

Luo Meng1,Li Fa1,Hao Dalei2ORCID,Zhu Qing3ORCID,Dashti Hamid1,Chen Min1ORCID

Affiliation:

1. Department of Forest and Wildlife Ecology University of Wisconsin‐Madison Madison WI USA

2. Atmospheric Sciences and Global Change Division Pacific Northwest National Laboratory Richland WA USA

3. Climate and Ecosystem Sciences Division Lawrence Berkeley National Laboratory Berkeley CA USA

Abstract

AbstractLand use and land cover change (LULCC) represents a key process of human‐Earth system interaction and has profound impacts on terrestrial ecosystem carbon cycling. As a key input for ecosystem models, future gridded LULCC data is typically spatially downscaled from regional LULCC projections by integrated assessment models, such as the Global Change Analysis Model (GCAM). The uncertainty associated with the different spatial downscaling methods and its impacts on the subsequent model projections have been historically ignored and rarely examined. This study investigated this problem using two representative spatial downscaling methods and focused on their impacts on the carbon cycle over the Arctic‐Boreal Vulnerability Experiment (ABoVE) domain, where extensive LULCC is expected. Specifically, we used the Future Land Use Simulation model (FLUS) and the Demeter model to generate 0.25° gridded LULCC data (i.e., LULCCFLUS and LULCCDemeter, respectively) with the same input of regional LULCC projections from GCAM, under both the low (i.e., SSP126) and high (i.e., SSP585) greenhouse gas emission scenarios. The two sets of downscaled LULCC were used to drive the Community Land Model version 5 and prognostically simulate the terrestrial carbon cycle dynamics over the 21st century. The results suggest large spatial‐temporal differences between LULCCFLUS and LULCCDemeter, and the spatial distributions of the needleleaf evergreen boreal tree, broadleaf deciduous boreal tree, broadleaf deciduous boreal shrub, and C3 arctic grass are particularly different under both SSP126 and SSP585. Additionally, the spatiotemporal differences are larger under SSP126 than SSP585, due to more intensive LULCC under SSP126 than SSP585 from GCAM projection. The differences in LULCC further lead to large discrepancies in the spatial patterns of projected gross primary productivity, ecosystem respiration, and net ecosystem exchange, which represent more than 79% of the contributions of future LULCC in 2100. Additionally, the difference in carbon flux under SSP126 is generally larger than those under SSP585. This study highlights the importance of considering the uncertainties induced by the spatial downscaling process in future LULCC projections and carbon cycle simulations.

Funder

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3