Uncovering Current and Future Variations of Irrigation Water Use Across China Using Machine Learning

Author:

Liu Kai1ORCID,Bo Yong12,Li Xueke3,Wang Shudong14,Zhou Guangsheng5ORCID

Affiliation:

1. State Key Laboratory of Remote Sensing Science Aerospace Information Research Institute Chinese Academy of Sciences Beijing China

2. University of Chinese Academy of Sciences Beijing China

3. Department of Earth and Environmental Science University of Pennsylvania Philadelphia PA USA

4. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC‐FEMD) Nanjing University of Information Science & Technology Nanjing China

5. Chinese Academy of Meteorological Science Beijing China

Abstract

AbstractAccurately characterizing changes in irrigation water use (IWU) is crucial for formulating optimal water resource allocation policies, particularly in the context of climate change. However, existing IWU estimation methods suffer from uncertainties due to limited data availability and model constraints, restricting their applicability on a national scale and under future climate change scenarios. We present a robust framework leveraging machine learning and multiple data sets to estimate IWU across China. Forced with an ensemble of climate and socio‐economic projections, we appraise future trends and additional costs of IWU. Our model shows high accuracy in reproducing IWU, with coefficient of determination (R2) ranging from 0.86 to 0.91 and root mean square error from 0.261 to 0.361 km3/yr when compared to reported values in Chinese prefectures. Independent validation at 11 cropland sites further confirms the model's predictive power (R2 = 0.67). Under different emissions scenarios, China's IWU is projected to increase by 8.5%–17.1% (6.8%–34.8%) by 2050s (2100s) compared to the historical period (1981–2010), with higher emissions leading to more significant increases. This rise in IWU by 2050s (2100s) comes with an estimated additional cost of US $1.65–3.91 ($2.28–6.5) billion/year, highlighting the urgency for sustainable water management. Our study provides an effective approach for estimating current and future IWU using machine learning techniques, transferable to other countries facing increasing irrigation demands.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3