Using Large Ensembles to Examine Historical and Projected Changes in Record‐Breaking Summertime Temperatures Over the Contiguous United States

Author:

McHugh Colleen. E.12ORCID,Delworth Thomas L.2ORCID,Cooke William2ORCID,Jia Liwei2ORCID

Affiliation:

1. Science Applications International Corporation Reston VA USA

2. Geophysical Fluid Dynamics Laboratory/NOAA Princeton NJ USA

Abstract

AbstractThe frequency and intensity of heat extremes over the United States have increased since the mid‐20th century and are projected to increase with additional anthropogenic greenhouse gas forcing. We define heat extremes as summertime (June–August) daily maximum 2m temperatures that exceed historical records. We examine characteristics of historical and near‐future heat extremes using observations and past and future projections using 100 ensemble members from three coupled global climate models large ensemble simulations. We find that the large ensembles capture the trend and variability of heat extremes over the period 2006–2020 relative to the 1991–2005 climatology but overestimate the frequency at which the heat extremes occur. In future warming scenarios, heat extremes continue to increase over the next 30 years, with high amplitude records in the Northwest and Central US. After 2050, we find there is a spread in the frequency of heat extremes that is dependent on the emissions scenario, with a high emissions until mid‐century followed by a high mitigation scenario showing a decrease in heat extremes by the end of the century. Although the frequency of future heat extremes is likely overestimated in the large ensembles, they are still a powerful tool for researching extreme temperatures in the climate system.

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3