Tropical Cyclone Storm Surge‐Based Flood Risk Assessment Under Combined Scenarios of High Tides and Sea‐Level Rise: A Case Study of Hainan Island, China

Author:

Zhou Ziying123ORCID,Yang Saini14,Hu Fuyu56ORCID,Chen Bingrui7,Shi Xianwu89,Liu Xiaoyan89

Affiliation:

1. Joint International Research Laboratory of Catastrophe Simulation and Systemic Risk Governance Beijing Normal University Zhuhai China

2. School of National Safety and Emergency Management Beijing Normal University Zhuhai China

3. School of Systems Science Beijing Normal University Beijing China

4. Integrated Research on Disaster Risk Beijing China

5. School of International Affairs and Public Administration Ocean University of China Qingdao China

6. Key Laboratory of Coastal Science and Integrated Management Ministry of Natural Resources Qingdao China

7. East China Sea Forecasting and Hazard Mitigation Center Ministry of Natural Resources Shanghai China

8. Faculty of Geographical Science Beijing Normal University Beijing China

9. Key Laboratory of Environmental Change and Natural Disaster Ministry of Education Beijing Normal University Beijing China

Abstract

AbstractIn the context of climate change, coastal flood risk is intensifying globally, particularly in China, where intricate coastlines and frequent tropical cyclones make storm surges a major concern. Despite local government's efforts to initiate coastal monitoring networks and qualitative risk guidelines, there remains a gap in detailed and efficient quantitative assessments for combinations of multiple sea‐level components. To address this, we develop the Tropical Cyclone Storm Surge‐based Flood Risk Assessment under Combined Scenarios (TCSoS‐FRACS). This framework integrates impacts of storm surges, high tides, and sea‐level rise using a hybrid of statistical and dynamic models to balance reliability and efficiency. By combining hazard, exposure, and vulnerability, it incorporates economic and demographic factors for a deeper understanding of risk composition. Applying TCSoS‐FRACS to Hainan Island reveals that the combined effects of storm surges, high tides, and sea‐level rise significantly amplify local coastal flood risk, increasing economic losses to 4.27–5.90 times and affected populations to 4.96–6.23 times. Additionally, transitioning from Fossil‐fueled Development (SSP5‐8.5) to Sustainability (SSP1‐1.9) can reduce the risk increase by approximately half. The equivalence in flood hazard between current high tides and future sea level under a sustainable scenario boosts confidence in climate change adaptation efforts. However, coastal cities with low hazard but high exposure need heightened vigilance in flood defense, as future risk could escalate sharply. Our study provides new insights into coastal flood risk on Hainan Island and other regions with similar profiles, offering a transferable and efficient tool for disaster risk management and aiding in regional sustainable development.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3