Salt Diapir‐Driven Recycling of Gas Hydrate

Author:

Burton Zachary F. M.12ORCID,Dafov Laura N.1

Affiliation:

1. Department of Earth and Planetary Sciences Stanford University Stanford CA USA

2. Department of Earth and Spatial Sciences University of Idaho Moscow ID USA

Abstract

AbstractBy harnessing both hypothetical, synthetic basin and gas hydrate (GH) system models and real‐world models of well‐studied salt diapir‐associated GH sites at Green Canyon (Gulf of Mexico) and Blake Ridge (U.S. Atlantic coast), we propose and demonstrate salt movement (and in particular, diapirism) to be a new mechanism for the recycling of marine GH. At Green Canyon, for example, we show that by considering this newly proposed diapir‐driven recycling mechanism in conjunction with previously proposed lithological control on sandy‐reservoir‐hosted hydrate at the base of the GH stability zone (BGHSZ; ∼bottom‐simulating reflector, BSR), modeled GH saturations match drilling data. Overall, salt diapir movement‐induced GH recycling provides a temperature‐driven mechanism by which GH saturations at the BGHSZ may reach >90 vol. % and by which GH volumes near and free gas volumes beneath the BGHSZ may be increased significantly through time. Interestingly, comparison of salt diapir‐driven recycling and sediment burial‐driven recycling scenarios suggests notably higher rates of recycling via diapir‐driven versus burial‐driven processes. Our results suggest that GH and associated free gas accumulations above salt diapir crests represent particularly attractive targets for unconventional and conventional hydrocarbon resource exploration and for scientific and academic drilling expeditions aimed at exploiting GH systems. Salt basins containing GH systems—including passive margin basins of the Gulf of Mexico, southeastern Brazil, and southwestern Africa—are therefore compelling localities for studying salt‐driven GH recycling and for salt diapir‐associated natural gas exploration.

Funder

U.S. Department of Energy

Stanford University

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3