Reservoir Space Characterization of Ordovician Wulalike Formation in Northwestern Ordos Basin, China

Author:

Wang Yuman1,Zhou Shangwen1ORCID,Liang Feng1,Huang Zhengliang2,Li Weiling3,Yan Wei2,Guo Wei2

Affiliation:

1. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China

2. Institute of Petroleum Exploration and Development, PetroChina Changqing Oilfield Company, Xi’an 710018, China

3. PetroChina Hangzhou Research Institute of Geology, Hangzhou 310023, China

Abstract

The Ordovician Wulalike Formation in the northwestern Ordos Basin is a new prospect for exploring marine shale gas in China, facing prominent problems such as unclear reservoir conditions and the distribution of enrichment areas. The types of reservoir space, fracture development, porosity composition, and physical properties of the lower Wulalike Formation are discussed through the multi-method identification and quantitative evaluation of reservoir space for appraisal wells. The Wulalike Formation in the study area contained fractured shale reservoirs with matrix pores (mainly inorganic pores) and permeable fractures. The fracture system of the lower Wulalike Formation is dominated by open bed-parallel fractures that are intermittent or continuous individually, with a width of 0.1–0.2 mm and spacing of 0.5–14.0 cm. The fracture-developed intervals generally exhibit bimodal or multimodal features on NMR T2 spectra and have a dual-track feature with a positive amplitude difference in deep and shallow resistivity logs. The length and fracture porosity of fracture-developed intervals varied greatly in different parts of the study area. In the Majiatan-Gufengzhuang area in the southern part of the study area, the fracture development degree generally decreased from west to east. In the Shanghaimiao area in the central part of the study area, fractures were extremely developed, the continuous thickness of the fracture-developed interval was generally more than 20 m, and the average fracture porosity was higher than 1.3%. In the Tiekesumiao area in the northern part of the study area, the fracture development degree was generally lower than that in the central and southern parts of the study area and also showed a decreasing trend from west to east. The lower Wulalike Formation had a total porosity of 2.46–7.08% (avg. 4.71%), roughly similar to the Longmaxi Formation in the Sichuan Basin, of which matrix porosity accounts for 34.0–90.0% (avg. 61.1%) and fracture porosity accounts for 10.0–66.0% (avg. 38.9%). From this, it could be inferred that the shale gas accumulation type of the lower Wulalike Formation in the northwest margin of the basin is mainly a fractured shale gas reservoir controlled by structure, and its “sweet spot area” is mainly controlled by tectonic setting and preservation conditions. This indicates that the Wulalike Formation in the northwestern Ordos Basin has good shale gas exploration prospects, and a large number of fault anticlines or fault noses formed by reverse dipping faults have the potential of favorable exploration targets.

Funder

PetroChina basic technology research project

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference41 articles.

1. Geological characteristics and resource potential of shale gas in China;Zou;Pet. Explor. Dev.,2010

2. China’s shale gas exploration and development: Understanding and practice;Ma;Pet. Explor. Dev.,2018

3. Progress in shale gas exploration in China and prospects for future development;Zhao;China Pet. Explor.,2020

4. Magoon, L.B., and Dow, W.G. (1994). The Petroleum System—From Source to Trap, American Association of Petroleum Geologists Memoir.

5. Introduction to unconventional petroleum systems;Law;AAPG Bull.,2002

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3