The Extending Ocean Drilling Pursuits (eODP) Project: Synthesizing Scientific Ocean Drilling Data

Author:

Sessa Jocelyn A.1ORCID,Fraass Andrew J.12ORCID,LeVay Leah J.3ORCID,Jamson Katie M.2ORCID,Peters Shanan E.4ORCID

Affiliation:

1. Academy of Natural Sciences of Drexel University Philadelphia PA USA

2. School of Earth and Ocean Sciences University of Victoria Victoria BC Canada

3. International Ocean Discovery Program Texas A&M University College Station TX USA

4. Department of Geoscience University of Wisconsin‐Madison Madison WI USA

Abstract

AbstractFor over 50 years, cores recovered from ocean basins have generated fossil, lithologic, and chemical archives that have revolutionized fields within the earth sciences. Although scientific ocean drilling (SOD) data are openly available following each expedition, the formats for these data are heterogeneous. Furthermore, lithological, chronological, and paleobiological data are typically separated into different repositories, limiting researchers' abilities to discover and analyze integrated SOD data sets. Emphasis within Earth Sciences on Findable, Accessible, Interoperable, and Reusable (FAIR) Data Principles and the establishment of community‐led databases provide a pathway to unite SOD data and further harness the scientific potential of the investments made in offshore drilling. Here, we describe a workflow for compiling, cleaning, and standardizing key SOD records, and importing them into the Paleobiology Database and Macrostrat, systems with versatile, open data distribution mechanisms. These efforts are being carried out by the extending Ocean Drilling Pursuits (eODP) project. eODP has processed all of the lithological, chronological, and paleobiological data from one SOD repository, along with numerous other data sets that were never deposited in a database; these were manually transcribed from original reports. This compiled data set contains over 79,899 lithological units from 1,125 drilling holes from 422 sites. Over 26,000 fossil‐bearing samples, with 5,378 taxonomic entries from 13 biological groups, are placed within this lithologic spatiotemporal framework. All information is available via GitHub and Macrostrat's application programming interface, which renders data retrievable by a variety of parameters, including age, site, and lithology.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3