Boron and Molybdenum Isotope Evidence for Source‐Controlled Compositional Diversity of Cenozoic Granites in the Eastern Tethyan Himalaya

Author:

Fan Jing‐Jing1,Wang Qiang123ORCID,Wei Gang‐Jian12ORCID,Li Jie12ORCID,Ma Lin12ORCID,Zhang Xiu‐Zheng12ORCID,Jiang Zi‐Qi4,Ma Jin‐Long12ORCID,Zhou Jin‐Sheng12ORCID,Li Qi‐Wei5ORCID,Wang Zi‐Long13,Liu Xiao4,Huang Tong‐Yu13,Zhang Miao‐Yan13

Affiliation:

1. State Key Laboratory of Isotope Geochemistry Guangzhou Institute of Geochemistry Chinese Academy of Sciences Guangzhou China

2. CAS Center for Excellence in Deep Earth Science Guangzhou China

3. College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China

4. Guilin University of Technology Guilin China

5. School of Earth Sciences China University of Geosciences Wuhan China

Abstract

AbstractThe origins of Cenozoic granites in the Himalaya are key to understanding the evolution of the Himalayan orogen. However, it is unclear whether these granites represent primary melts, and the nature of their magma source is controversial. Here, we present a systematic element and Sr–Nd–B–Mo isotope study of Cenozoic granites from the Yardoi area in the eastern Tethyan Himalaya, China. These granites can be divided into two groups: mid‐Eocene porphyritic two‐mica granites with low SiO2 contents (65.9−69.6 wt.%) and adakitic geochemical signatures, and mid‐Eocene to Miocene equigranular granites with high SiO2 contents (71.6−75.5 wt.%). The high‐SiO2 granites (HSG) have similar Sr−Nd isotope compositions to the low‐SiO2 granites (LSG), but they have distinct δ11B values of −19.4‰ to −11.4‰ and −10.6‰ to −6.89‰. This indicates that the two groups have different sources, with the LSG derived by partial melting dominantly of metamafic rocks at thickened lower crustal conditions, and the HSG generated by partial melting of the mid‐crust metasedimentary rocks with less enriched Nd isotope compositions. The δ98/95Mo of the LSG and HSG are highly variable with values of −0.68‰ to 0.12‰ and −1.13‰ to 0.46‰, respectively. δ11B values of the HSG correlate positively with δ98/95Mo and Sr/Y values and correlate negatively with K2O, Rb, Zr, and Rb/Sr, reflecting the addition of external metamorphic fluids during anatexis of the metapelites. The B–Mo isotope data robustly suggest source‐controlled compositional diversity of the Himalayan granites, which could provide clues to the physical and geochemical responses during the evolution of a large orogen.

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3