Affiliation:
1. State Key Laboratory of Isotope Geochemistry Guangzhou Institute of Geochemistry Chinese Academy of Sciences Guangzhou China
2. College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China
3. CAS Center for Excellence in Deep Earth Science Guangzhou China
4. School of Earth and Environmental Sciences Cardiff University Cardiff UK
Abstract
AbstractRecycling of molybdenum isotopes in continental subduction zones remains debated. In this contribution, we re‐visit the Mo isotope compositions of the Sailipu post‐collisional ultrapotassic rocks in the Himalaya‐southern Tibet orogen. These ultrapotassic rocks have very varying δ98/95Mo values of −0.66 to −0.07‰ and Mo/Ce ratios of 0.0008–0.005, which are lower than those of mid‐ocean ridge basalts (MORB; δ98/95Mo = −0.20 ± 0.06‰, and Mo/Ce = 0.03) and oceanic subduction‐related (i.e., mantle source involving fluids, residual slab, or oceanic sediments) magmatic rocks (e.g., modern arc lavas, Cenozoic OIB‐type basalts in eastern China and the central Mariana Trough basalts in the back‐arc basin, syn‐collisional andesitic rocks in southern Tibet). Combined with the light Mo isotopes of the Himalayan schists and gneisses, we suggest that the light Mo isotopic signature of the Sailipu ultrapotassic rocks is derived from subducted Indian continental crust. This is consistent with the extremely low δ11B (−17.4 to −9.7‰) and B/Nb (0.16–1) values and enriched Sr‐Nd‐Pb isotopes of the Sailipu ultrapotassic rocks. Thus, this study reveals the recycling of light Mo‐B isotopes during continental subduction and demonstrates that Mo‐B isotopes can effectively distinguish between continental and oceanic subduction.
Publisher
American Geophysical Union (AGU)
Subject
Geochemistry and Petrology,Geophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献