Affiliation:
1. Earth and Environmental Sciences Programme Faculty of Science The Chinese University of Hong Kong Hong Kong S.A.R. China
Abstract
AbstractThe application of deep‐learning‐based seismic phase pickers has surged in recent years. However, the efficacy of these models when applied to monitoring volcano seismicity has yet to be fully evaluated. Here, we first compile a data set of seismic waveforms from various volcanoes globally. We then show that the performances of two widely used deep‐learning pickers deteriorate systematically as the earthquakes' frequency content decreases. Therefore, the performances are especially poor for long‐period earthquakes often associated with fluid/magma movement. Subsequently, we train new models which perform significantly better, including when tested on two data sets where no training data were used: volcanic earthquakes along the Cascadia subduction zone and tectonic low‐frequency earthquakes along the Nankai Trough. Our model/workflow can be applied to improve monitoring of volcano seismicity globally while our compiled data set can be used to benchmark future methods for characterizing volcano seismicity, especially long‐period earthquakes which are difficult to monitor.
Publisher
American Geophysical Union (AGU)