A Deep-Learning Phase Picker with Calibrated Bayesian-Derived Uncertainties for Earthquakes in the Yellowstone Volcanic Region

Author:

Armstrong Alysha D.1ORCID,Claerhout Zachary1ORCID,Baker Ben1ORCID,Koper Keith D.1ORCID

Affiliation:

1. 1Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah, U.S.A.

Abstract

ABSTRACT Traditional seismic phase pickers perform poorly during periods of elevated seismicity due to inherent weakness when detecting overlapping earthquake waveforms. This weakness results in incomplete seismic catalogs, particularly deficient in earthquakes that are close in space and time. Supervised deep-learning (DL) pickers allow for improved detection performance and better handle the overlapping waveforms. Here, we present a DL phase-picking procedure specifically trained on Yellowstone seismicity and designed to fit within the University of Utah Seismograph Stations (UUSS) real-time system. We modify and combine existing DL models to label the seismic phases in continuous data and produce better phase arrival times. We use transfer learning to achieve consistency with UUSS analysts while maintaining robust models. To improve the performance during periods of enhanced seismicity, we develop a data augmentation strategy to synthesize waveforms with two nearly coincident P arrivals. We also incorporate a model uncertainty quantification method, Multiple Stochastic Weight Averaging-Gaussian (MultiSWAG), for arrival-time estimates and compare it to dropout—a more standard approach. We use an efficient, model-agnostic method of empirically calibrating the uncertainties to produce meaningful 90% credible intervals. The credible intervals are used downstream in association, location, and quality assessment. For an in-depth evaluation of our automated method, we apply it to continuous data recorded from 25 March to 3 April 2014, on 20 three-component stations and 14 vertical-component stations. This 10-day period contains an Mw 4.8 event, the largest earthquake in the Yellowstone region since 1980. A seismic analyst manually examined more than 1000 located events, including ∼855 previously unidentified, and concluded that only two were incorrect. Finally, we present an analyst-created, high-resolution arrival-time data set, including 651 new arrival times, for one hour of data from station WY.YNR for robust evaluation of missed detections before association. Our method identified 60% of the analyst P picks and 81% of the S picks.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Reference85 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3