A Model of Hourly Variations of the Near‐Earth Magnetic Field Generated in the Inner Magnetosphere and Its Induced Counterpart

Author:

Fillion M.12ORCID,Chulliat A.12ORCID,Alken P.12ORCID,Kruglyakov M.3ORCID,Kuvshinov A.45ORCID

Affiliation:

1. Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder CO USA

2. NOAA National Centers for Environmental Information Boulder CO USA

3. Department of Physics University of Otago Otago New Zealand

4. Institute of Geophysics ETH Zürich Zürich Switzerland

5. Institute of Solar‐Terrestrial Physics Siberian Branch of Russian Academy of Sciences Irkutsk Russia

Abstract

AbstractWe present a new model of the near‐Earth magnetospheric field produced by electric currents in the inner magnetosphere and the associated induced magnetic field. The model is designed to track hourly variations of these fields and accounts for their local time asymmetries. It is built by applying spherical harmonic analysis to vector measurements from the ground observatory network at low and mid‐latitudes. The primary and induced fields are separated with an approach in the time domain that uses a a priori radially‐symmetric electric conductivity model of the Earth. The model coefficients are computed at one‐hour time steps between 1997 and 2022. This model is shown to be consistent to within a few nT with previously developed indices which track the magnetospheric ring current. It is also validated against data from the Swarm, CHAMP and Øersted satellites. The fit to satellite data is comparable to that of the CHAOS‐7.15 model for geomagnetically quiet times, and improved by up to 20% on some components for geomagnetically moderate and active times. We attribute these differences mostly to a better representation of local time asymmetries, both on average and during individual geomagnetic storms. This model can be used in various applications, such as investigating the properties of the magnetospheric field and its sources and separating the magnetospheric field from the fields of other sources in geomagnetic field modeling.

Funder

National Aeronautics and Space Administration

Entomological Society of America

Deutsches Zentrum für Luft- und Raumfahrt

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3