Ionospheric response to solar and interplanetary disturbances: a Swarm perspective

Author:

Balasis G.1ORCID,Papadimitriou C.12,Boutsi A. Z.13

Affiliation:

1. Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, Athens, Greece

2. Space Applications & Research Consultancy – SPARC, Athens, Greece

3. Department of Physics, National and Kapodistrian University of Athens, Athens, Greece

Abstract

The ionospheric response to solar and interplanetary disturbances has been the subject of intense study for several decades. For 5 years now, the European Space Agency's Swarm fleet of satellites surveys the Earth's topside ionosphere, measuring magnetic and electric fields at low-Earth orbit with unprecedented detail. Herein, we study in situ the ionospheric response in terms of the occurrence of plasma instabilities based on 2 years of Swarm observations. Plasma instabilities are an important element of space weather because they include irregularities like the equatorial spread F events, which are responsible for the disruption of radio communications. Moreover, we focus on three out of the four most intense geospace magnetic storms of solar cycle 24 that occurred in 2015, including the St Patrick's Day event, which is the strongest magnetic storm of the present solar cycle. We examine the associated ionospheric response at Swarm altitudes through the estimation of a Swarm Dst-like index. The newly proposed Swarm derived Dst index may be suitable for space weather applications. This article is part of the theme issue ‘Solar eruptions and their space weather impact’.

Funder

Development of recommendation for new Swarm product or service

Competitiveness, Entrepreneurship and Innovation

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3