Nightside High‐Latitude Phase and Amplitude Scintillation During a Substorm Using 1‐Second Scintillation Indices

Author:

Nishimura Y.1ORCID,Kelly T.1,Jayachandran P. T.2ORCID,Mrak S.3,Semeter J. L.1ORCID,Donovan E. F.4,Angelopoulos V.5ORCID,Nishitani N.6ORCID

Affiliation:

1. Department of Electrical and Computer Engineering and Center for Space Physics Boston University Boston MA USA

2. Physics Department University of New Brunswick Fredericton NB Canada

3. Space Weather Technology Research & Education Center University of Colorado Boulder CO USA

4. Department of Physics and Astronomy University of Calgary Calgary AB Canada

5. Department of Earth, and Space Sciences University of California, Los Angeles Los Angeles CA USA

6. Institute for Space Earth Environmental Research Nagoya University Nagoya Japan

Abstract

AbstractWe examined evolution of Global Positioning System (GPS) scintillation during a substorm in the nightside high latitude ionosphere, using 1‐s phase and amplitude scintillation indices from the Canadian High Arctic Ionospheric Network (CHAIN) network. The traditional 1‐min scintillation indices showed that the phase scintillation was dominant, while the amplitude scintillation was weak. However, the 1‐s amplitude scintillation occurred more often in association with major auroral structures (polar cap arc, growth phase arc, onset arc, poleward expanding arc, poleward boundary intensification, and diffuse aurora) that were detected by the THEMIS all‐sky imagers (ASIs). The 1‐min index missed much of the amplitude fluctuations because they only lasted ∼10 s near a local peak or at the gradients of the auroral structures. The 1‐s phase scintillation was concurrent with the amplitude scintillation but was much weaker than the 1‐min phase scintillation. The frequency spectral analysis showed that the spectral power above ∼1 Hz was diffractive and below ∼1 Hz was refractive. We suggest that the amplitude scintillation in the high‐latitude ionosphere is much more common than previously considered, and that a short time window of the order of 1 s should be used to detect the scintillation. The 1‐min phase scintillation index is largely influenced by refractive effects due to total electron content (TEC) variations, and the spectral power below ∼1 Hz should be removed to identify diffractive scintillation.

Funder

National Aeronautics and Space Administration

National Science Foundation

Air Force Office of Scientific Research

Canada Foundation for Innovation

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3