Scintillation Climatology from a Software Defined Radio Receiver over Antarctica

Author:

Imam Rayan1,Alfonsi Lucilla2ORCID,Spogli Luca2ORCID,Cesaroni Claudio2ORCID,Ebrahimi Mehr Iman3ORCID,Minetto Alex3ORCID,Dovis Fabio3ORCID

Affiliation:

1. a:1:{s:5:"en_US";s:46:"Istituto Nazionale di Geofisica e Vulcanologia";}

2. Istituto Nazionale di Geofisica e Vulcanologia

3. Politecnico di Torino

Abstract

Software-Defined Radio (SDR) Global Navigation Satellite System (GNSS) receivers for operational Ionospheric Scintillation Monitoring (ISM) have faced challenges and were deemed failures by many research projects. The need for a highly stable oscillator and a robust real-time signal-tracking capability have been the main challenges. The Istituto Nazionale di Geofisica e Vulcanologia (INGV) led a project called DemoGRAPE (Demonstrator of GNSS Research and Application for Polar Environment) to deploy an SDR GNSS Receiver in SANAE IV Antarctica station, which has been continuously operating since January 2016. The SDR receiver was designed by the Navigation Signal Analysis and Simulation (NavSAS) group in collaboration with the Joint Research Centre (JRC) of the European Commission.  The system deploys the SDR in parallel to a Septentrio PolaRxS ISM receiver. The two receivers are fed by the same receiving antenna (i.e., they share the same field of view and, hence, cross the same portion of the ionosphere) such that they receive quasi-identical signals except for the independent effects of their front-ends. The SDR produces as output a log file, equivalent to the ISM record produced by PolaRxS, that contains the amplitude and phase scintillation indexes. In addition to this, the SDR system records the raw digital samples of the GNSS signal when the internal algorithm of the receiver detects scintillation presence. These data can be used to replicate the scintillation event in the laboratory and perform dedicated post-processing of the raw signal itself. The system has been in operation for over seven years now, spanning more than half a solar cycle. It has recorded several geomagnetic storm events as well as abundant data in quiet conditions. To the best of our knowledge, this is the longest dataset of this nature (co-located PolaRxS and SDR  receivers). We compare the performance of the two receivers by analyzing the scintillation climatology maps obtainable from both receivers' data. Here, the climatology is obtained using the well-established Ground Based Scintillation Climatology (GBSC) technique from the data provided by the two different receivers.  The study shows that the SDR climatology maps under disturbed geomagnetic conditions are equivalent to those obtained from the PolaRxS receiver. Under quiet conditions, the SDR shows more scintillation events than the PolaRxS. Carefully inspecting the differences in the scintillation occurrence between the two receivers, they seem not to happen randomly but mainly concentrated along the expected (climatological) position of the auroral oval. This means that the SDR application for space weather monitoring could be possible and that the SDR could be utilizable as an informative tool by the ionospheric scintillation community.

Publisher

Instituto Nazionale di Geofisica e Vulcanologia, INGV

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3