Affiliation:
1. Stable Isotopes Research Group Water Resources Management Laboratory Chemistry School Universidad Nacional Heredia Costa Rica
2. Department of Earth and Environmental Sciences University of Texas at Arlington Arlington TX USA
3. Department of Geography and Water and Global Change Observatory University of Costa Rica San José Costa Rica
4. Civil and Environmental Engineering Washington State University Pullman WA USA
5. Empresa de Servicios Públicos de Heredia ESPH S.A. Heredia Costa Rica
Abstract
AbstractNitrate legacy is affecting groundwater sources across the tropics. This study describes isotopic and ionic spatial trends across a tropical, fractured, volcanic multi‐aquifer system in central Costa Rica in relation to land use change over four decades. Springs and wells (from 800 to 2,400 m asl) were sampled for NO3− and Cl− concentrations, δ18Owater, δ15NNO3, and δ18ONO3. A Bayesian isotope mixing model was used to estimate potential source contributions to the nitrate legacy in groundwater. Land use change was evaluated using satellite imagery from 1979 to 2019. The lower nitrate concentrations (<1 mg/L NO3−N) were reported in headwater springs near protected forested areas, while greater concentrations (up to ∼63 mg/L) were reported in wells (mid‐ and low‐elevation sites in the unconfined unit) and low‐elevation springs. High‐elevation springs were characterized by low Cl− and moderate NO3−/Cl− ratios, indicating the potential influence of soil nitrogen (SN) inputs. Wells and low‐elevation springs exhibited greater NO3−/Cl− ratios and Cl− concentrations above 100 μmol/L. Bayesian calculations suggest a mixture of sewage (domestic septic tanks), SN (forested recharge areas), and chemical fertilizers (coffee plantations), as a direct result of abrupt land use change in the last 40 years. Our results confirm the incipient trend in increasing groundwater nitrogen and highlight the urgent need for a multi‐municipal plan to transition from domestic septic tanks to regional sewage treatment and sustainable agricultural practices to prevent future groundwater quality degradation effectively.
Funder
International Atomic Energy Agency
Universidad Nacional de Costa Rica
University of Texas at Arlington
Publisher
American Geophysical Union (AGU)
Subject
Paleontology,Atmospheric Science,Soil Science,Water Science and Technology,Ecology,Aquatic Science,Forestry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献