Permafrost Carbon: Progress on Understanding Stocks and Fluxes Across Northern Terrestrial Ecosystems

Author:

Treat Claire C.1ORCID,Virkkala Anna‐Maria23,Burke Eleanor4ORCID,Bruhwiler Lori5ORCID,Chatterjee Abhishek6ORCID,Fisher Joshua B.7,Hashemi Josh1ORCID,Parmentier Frans‐Jan W.89ORCID,Rogers Brendan M.2ORCID,Westermann Sebastian89ORCID,Watts Jennifer D.2ORCID,Blanc‐Betes Elena10,Fuchs Matthias11,Kruse Stefan12ORCID,Malhotra Avni13,Miner Kimberley6,Strauss Jens1ORCID,Armstrong Amanda14,Epstein Howard E.15ORCID,Gay Bradley6ORCID,Goeckede Mathias16ORCID,Kalhori Aram17ORCID,Kou Dan18ORCID,Miller Charles E.6ORCID,Natali Susan M.2,Oh Youmi519,Shakil Sarah2021ORCID,Sonnentag Oliver22,Varner Ruth K.23ORCID,Zolkos Scott2,Schuur Edward A.G.24ORCID,Hugelius Gustaf3ORCID

Affiliation:

1. Permafrost Research Section Alfred Wegener Institute Helmholtz Center for Polar and Marine Research Potsdam Germany

2. Woodwell Climate Research Center Falmouth MA USA

3. Department of Physical Geography and Bolin Centre for Climate Research Stockholm University Stockholm Sweden

4. Met Office Hadley Centre Exeter UK

5. NOAA Global Monitoring Laboratory Boulder CO USA

6. NASA Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA

7. Schmid College of Science and Technology Chapman University Orange CA USA

8. Centre for Biogeochemistry in the Anthropocene, Department of Geosciences University of Oslo Oslo Norway

9. Department of Geosciences University of Oslo Oslo Norway

10. Institute for Sustainability Energy and Environment University of Illinois at Urbana‐Champaign Urbana IL USA

11. Renewable and Sustainable Energy Institute University of Colorado Boulder Boulder CO USA

12. Polar Terrestrial Environmental Systems Alfred Wegener Institute Helmholtz Center for Polar and Marine Research Potsdam Germany

13. Biological Sciences Division Pacific Northwest National Laboratory Richland WA USA

14. University of Maryland Baltimore County ‐ GESTAR 2 Baltimore MD USA

15. Department of Environmental Sciences University of Virginia Charlottesville VA USA

16. Department of Biogeochemical Signals Max Planck Institute for Biogeochemistry Jena Germany

17. GFZ German Research Centre for Geosciences Potsdam Germany

18. Department of Biological and Environmental Sciences Biogeochemistry Research Group University of Eastern Finland Kuopio Finland

19. Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder CO USA

20. Department of Biological Sciences University of Alberta Edmonton AB Canada

21. Department of Ecology and Genetics, Limnology Uppsala University Uppsala Sweden

22. Département de géographie Université de Montréal Montréal QC Canada

23. Department of Earth Sciences and Institute for the Study of Earth Oceans and Space University of New Hampshire Durham NH USA

24. Center for Ecosystem Science and Society, and Department of Biological Sciences Northern Arizona University Flagstaff AZ USA

Abstract

AbstractSignificant progress in permafrost carbon science made over the past decades include the identification of vast permafrost carbon stocks, the development of new pan‐Arctic permafrost maps, an increase in terrestrial measurement sites for CO2 and methane fluxes, and important factors affecting carbon cycling, including vegetation changes, periods of soil freezing and thawing, wildfire, and other disturbance events. Process‐based modeling studies now include key elements of permafrost carbon cycling and advances in statistical modeling and inverse modeling enhance understanding of permafrost region C budgets. By combining existing data syntheses and model outputs, the permafrost region is likely a wetland methane source and small terrestrial ecosystem CO2 sink with lower net CO2 uptake toward higher latitudes, excluding wildfire emissions. For 2002–2014, the strongest CO2 sink was located in western Canada (median: −52 g C m−2 y−1) and smallest sinks in Alaska, Canadian tundra, and Siberian tundra (medians: −5 to −9 g C m−2 y−1). Eurasian regions had the largest median wetland methane fluxes (16–18 g CH4 m−2 y−1). Quantifying the regional scale carbon balance remains challenging because of high spatial and temporal variability and relatively low density of observations. More accurate permafrost region carbon fluxes require: (a) the development of better maps characterizing wetlands and dynamics of vegetation and disturbances, including abrupt permafrost thaw; (b) the establishment of new year‐round CO2 and methane flux sites in underrepresented areas; and (c) improved models that better represent important permafrost carbon cycle dynamics, including non‐growing season emissions and disturbance effects.

Funder

European Research Council

HORIZON EUROPE Framework Programme

Gordon and Betty Moore Foundation

European Space Agency

International Permafrost Association

Met Office

Vetenskapsrådet

Jet Propulsion Laboratory

National Aeronautics and Space Administration

National Science Foundation

Publisher

American Geophysical Union (AGU)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3